化学
过氧化氢
铈
纳米技术
纳米结构
超氧化物歧化酶
材料科学
组合化学
酶
无机化学
有机化学
作者
Haiyan Ruan,Shaofang Zhang,Hongguang Wang,Jiahui Pei,Ruoli Zhao,Xiaoyu Mu,Hao Wang,Xiaodong Zhang
出处
期刊:ACS applied nano materials
[American Chemical Society]
日期:2022-04-25
卷期号:5 (5): 6564-6574
被引量:24
标识
DOI:10.1021/acsanm.2c00644
摘要
The construction of nanozymes at the atomic level that hold structural stability and high enzyme-like activity is now a key factor in the optimization of an artificial enzyme. Single-atom metal/cerium oxide (CeO2)-based nanozymes have been demonstrated to possess a variety of enzymatic activities and radical scavenging abilities, which are mainly attributed to the single-atom active site, redox valence states, and abundant defect chemistry. Here, we developed a single-atom Pd/CeO2 nanostructure by aqueous phase synthesis that exhibits the advantages of high yield and good stability. The Pd/CeO2 nanostructure possesses peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities as well as reactive nitrogen species free-radical scavenging activity, exhibiting multienzyme-like activities and stability compared with CeO2 and other metal-based nanozymes. It is worth mentioning that the Pd/CeO2 nanostructure exhibits high POD-mimicking activity with a reaction rate of 0.88 μM/min, about 5 times higher than that of the CeO2 nanozyme. In addition, the CAT-like activity of the Pd/CeO2 nanostructure is excellent, and its scavenging rate of hydrogen peroxide reached nearly 100% at a concentration of 50 ng/μL. The present work shows that single-atom Pd substitution is a promising strategy for the design of CeO2 nanozymes to exert better effects on biomedical applications, especially with diseases related to oxidative stress.
科研通智能强力驱动
Strongly Powered by AbleSci AI