AN EARLY RETINAL DISEASE DIAGNOSIS SYSTEM USING OCT IMAGES VIA CNN-BASED STACKING ENSEMBLE LEARNING

人工智能 视网膜 光学相干层析成像 卷积神经网络 计算机科学 深度学习 模式识别(心理学) 眼科 医学
作者
İsmail Kayadibi,Gür Emre Güraksın
出处
期刊:International Journal for Multiscale Computational Engineering [Begell House Inc.]
卷期号:21 (1): 1-25 被引量:3
标识
DOI:10.1615/intjmultcompeng.2022043544
摘要

Retinal diseases are severe health problems that affect the quality of life. They progress slowly and asymptomatically, and thus can cause blindness, if left untreated. Therefore, the importance of early detection and follow-up treatment in the prevention of visual impairments cannot be overstated. Optical coherence tomography (OCT) is a medical imaging method for analyzing and identifying retinal layers with high resolution. In this study, we propose a computer-assisted diagnostic system with Convolutional Neural Network (CNN)-based stacking ensemble learning (EL) method to detect diabetic macular edema, drusen, and choroidal neovascularization diseases using OCT images. First, fine-tuned AlexNet (FT-CNN) was used to extract features from OCT images. The features were extracted from activation maps and then classified using homogeneous and heterogeneous EL methods. The EL methods were applied to two publicly available OCT datasets [Duke spectral domain OCT dataset and California San Diego University (UCSD) OCT dataset]. The proposed CNN-based stacking (heterogeneous) EL method classified the retinal diseases with 99.69% accuracy, 99.70% sensitivity, 99.82% specificity, 99.76% precision, and 99.73% F1 score in the Duke dataset. It classified the retinal diseases with 99.70% accuracy, 99.70% sensitivity, 99.90% specificity, 99.70% precision, and 99.70% F1 score in UCSD dataset. For the two datasets, the proposed method outperformed the state-of-the-art by earlier studies. As a consequence, it can aid physicians in the early detection of retinal illnesses and contribute to the development of computer-assisted diagnostic tools in ophthalmology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巴布鲁斯发布了新的文献求助10
刚刚
ccc完成签到,获得积分10
1秒前
阿米不吃菠菜完成签到 ,获得积分10
1秒前
2秒前
科研小菜完成签到 ,获得积分10
3秒前
zxxx发布了新的文献求助10
6秒前
小二郎应助longliang采纳,获得10
8秒前
CRANE完成签到 ,获得积分10
8秒前
科研通AI2S应助麦子采纳,获得10
8秒前
正霖完成签到,获得积分10
9秒前
小达人完成签到 ,获得积分10
10秒前
叶绿体机智完成签到,获得积分10
10秒前
10秒前
zxc完成签到,获得积分10
10秒前
yayan发布了新的文献求助10
10秒前
葡萄成熟发布了新的文献求助10
11秒前
ahaha完成签到,获得积分10
11秒前
ahaha发布了新的文献求助10
14秒前
小羊完成签到,获得积分10
16秒前
ding应助求助采纳,获得10
16秒前
SciGPT应助bobo采纳,获得10
17秒前
英俊的铭应助sarah采纳,获得20
20秒前
21秒前
21秒前
23秒前
坚定的芷珊完成签到,获得积分10
24秒前
zxxx完成签到,获得积分20
24秒前
24秒前
26秒前
28秒前
28秒前
李健应助专一的书雪采纳,获得10
28秒前
29秒前
29秒前
lalalalal完成签到,获得积分20
29秒前
路过蜻蜓完成签到,获得积分10
31秒前
yayan完成签到,获得积分20
31秒前
wy完成签到,获得积分10
31秒前
lalalalal发布了新的文献求助10
33秒前
桐桐应助漫步云端采纳,获得10
33秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163395
求助须知:如何正确求助?哪些是违规求助? 2814263
关于积分的说明 7904141
捐赠科研通 2473792
什么是DOI,文献DOI怎么找? 1317118
科研通“疑难数据库(出版商)”最低求助积分说明 631625
版权声明 602187