AN EARLY RETINAL DISEASE DIAGNOSIS SYSTEM USING OCT IMAGES VIA CNN-BASED STACKING ENSEMBLE LEARNING

人工智能 视网膜 光学相干层析成像 卷积神经网络 计算机科学 深度学习 模式识别(心理学) 眼科 医学
作者
İsmail Kayadibi,Gür Emre Güraksın
出处
期刊:International Journal for Multiscale Computational Engineering [Begell House Inc.]
卷期号:21 (1): 1-25 被引量:3
标识
DOI:10.1615/intjmultcompeng.2022043544
摘要

Retinal diseases are severe health problems that affect the quality of life. They progress slowly and asymptomatically, and thus can cause blindness, if left untreated. Therefore, the importance of early detection and follow-up treatment in the prevention of visual impairments cannot be overstated. Optical coherence tomography (OCT) is a medical imaging method for analyzing and identifying retinal layers with high resolution. In this study, we propose a computer-assisted diagnostic system with Convolutional Neural Network (CNN)-based stacking ensemble learning (EL) method to detect diabetic macular edema, drusen, and choroidal neovascularization diseases using OCT images. First, fine-tuned AlexNet (FT-CNN) was used to extract features from OCT images. The features were extracted from activation maps and then classified using homogeneous and heterogeneous EL methods. The EL methods were applied to two publicly available OCT datasets [Duke spectral domain OCT dataset and California San Diego University (UCSD) OCT dataset]. The proposed CNN-based stacking (heterogeneous) EL method classified the retinal diseases with 99.69% accuracy, 99.70% sensitivity, 99.82% specificity, 99.76% precision, and 99.73% F1 score in the Duke dataset. It classified the retinal diseases with 99.70% accuracy, 99.70% sensitivity, 99.90% specificity, 99.70% precision, and 99.70% F1 score in UCSD dataset. For the two datasets, the proposed method outperformed the state-of-the-art by earlier studies. As a consequence, it can aid physicians in the early detection of retinal illnesses and contribute to the development of computer-assisted diagnostic tools in ophthalmology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
blebui应助姜茶采纳,获得10
刚刚
幼稚园小新完成签到,获得积分10
刚刚
123完成签到,获得积分10
刚刚
1秒前
snowball完成签到,获得积分10
1秒前
2秒前
duoduozs发布了新的文献求助10
2秒前
velpro完成签到,获得积分10
2秒前
qqqq完成签到,获得积分10
2秒前
3秒前
3秒前
溪风完成签到,获得积分10
3秒前
ting发布了新的文献求助10
4秒前
5秒前
Xxxnnian发布了新的文献求助30
5秒前
听风暖完成签到 ,获得积分10
6秒前
li发布了新的文献求助10
6秒前
赘婿应助伊布采纳,获得10
6秒前
gaga完成签到,获得积分10
6秒前
小蘑菇应助reck采纳,获得10
7秒前
清风荷影完成签到 ,获得积分10
7秒前
酷波er应助动如脱兔采纳,获得10
8秒前
8秒前
8秒前
8秒前
9秒前
圈圈发布了新的文献求助10
9秒前
易达发布了新的文献求助10
9秒前
追梦人完成签到,获得积分10
9秒前
9秒前
实验室扛把子完成签到,获得积分10
9秒前
在水一方应助清爽忆山采纳,获得10
10秒前
小马甲应助日月山河永在采纳,获得10
10秒前
娃娃发布了新的文献求助10
11秒前
11秒前
任医生发布了新的文献求助10
11秒前
冷眼观潮完成签到,获得积分10
11秒前
11秒前
守约发布了新的文献求助10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672