AN EARLY RETINAL DISEASE DIAGNOSIS SYSTEM USING OCT IMAGES VIA CNN-BASED STACKING ENSEMBLE LEARNING

人工智能 视网膜 光学相干层析成像 卷积神经网络 计算机科学 深度学习 模式识别(心理学) 眼科 医学
作者
İsmail Kayadibi,Gür Emre Güraksın
出处
期刊:International Journal for Multiscale Computational Engineering [Begell House]
卷期号:21 (1): 1-25 被引量:3
标识
DOI:10.1615/intjmultcompeng.2022043544
摘要

Retinal diseases are severe health problems that affect the quality of life. They progress slowly and asymptomatically, and thus can cause blindness, if left untreated. Therefore, the importance of early detection and follow-up treatment in the prevention of visual impairments cannot be overstated. Optical coherence tomography (OCT) is a medical imaging method for analyzing and identifying retinal layers with high resolution. In this study, we propose a computer-assisted diagnostic system with Convolutional Neural Network (CNN)-based stacking ensemble learning (EL) method to detect diabetic macular edema, drusen, and choroidal neovascularization diseases using OCT images. First, fine-tuned AlexNet (FT-CNN) was used to extract features from OCT images. The features were extracted from activation maps and then classified using homogeneous and heterogeneous EL methods. The EL methods were applied to two publicly available OCT datasets [Duke spectral domain OCT dataset and California San Diego University (UCSD) OCT dataset]. The proposed CNN-based stacking (heterogeneous) EL method classified the retinal diseases with 99.69% accuracy, 99.70% sensitivity, 99.82% specificity, 99.76% precision, and 99.73% F1 score in the Duke dataset. It classified the retinal diseases with 99.70% accuracy, 99.70% sensitivity, 99.90% specificity, 99.70% precision, and 99.70% F1 score in UCSD dataset. For the two datasets, the proposed method outperformed the state-of-the-art by earlier studies. As a consequence, it can aid physicians in the early detection of retinal illnesses and contribute to the development of computer-assisted diagnostic tools in ophthalmology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助布洛芬采纳,获得10
刚刚
1秒前
1秒前
2秒前
3秒前
万能图书馆应助迟到虞姬采纳,获得10
5秒前
潇洒飞丹发布了新的文献求助10
5秒前
wwpedd给liaodongjun的求助进行了留言
5秒前
6秒前
6秒前
lalala发布了新的文献求助10
8秒前
1111111发布了新的文献求助10
8秒前
zjfmmu完成签到,获得积分10
9秒前
9秒前
壮观寒荷完成签到,获得积分10
11秒前
哦啦啦发布了新的文献求助10
11秒前
布洛芬发布了新的文献求助10
12秒前
执着新蕾发布了新的文献求助10
12秒前
21完成签到,获得积分10
15秒前
15秒前
16秒前
万能图书馆应助壮观寒荷采纳,获得10
17秒前
杳鸢应助21采纳,获得10
18秒前
可爱的函函应助温温采纳,获得10
18秒前
junzhu完成签到,获得积分10
18秒前
Catalina_S完成签到,获得积分0
18秒前
wanci应助郝出站采纳,获得30
18秒前
Ava应助小花生zz采纳,获得30
19秒前
闵卷完成签到,获得积分10
19秒前
萝卜头完成签到,获得积分10
19秒前
0526Test完成签到 ,获得积分10
20秒前
20秒前
李健的小迷弟应助RUSTY采纳,获得10
20秒前
20秒前
20秒前
20秒前
20秒前
21秒前
在水一方应助皮皮采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952383
求助须知:如何正确求助?哪些是违规求助? 3497737
关于积分的说明 11088744
捐赠科研通 3228363
什么是DOI,文献DOI怎么找? 1784838
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303