Utility of artificial intelligence with deep learning of hematoxylin and eosin-stained whole slide images to predict lymph node metastasis in T1 colorectal cancer using endoscopically resected specimens; prediction of lymph node metastasis in T1 colorectal cancer

医学 H&E染色 接收机工作特性 腹部外科 结直肠癌 淋巴结 淋巴结转移 结肠镜检查 外科肿瘤学 放射科 人工智能 转移 外科 癌症 病理 内科学 计算机科学 免疫组织化学
作者
Joo Hye Song,Yiyu Hong,Eun Ran Kim,Seok‐Hyung Kim,Insuk Sohn
出处
期刊:Journal of Gastroenterology [Springer Science+Business Media]
卷期号:57 (9): 654-666 被引量:38
标识
DOI:10.1007/s00535-022-01894-4
摘要

BackgroundWhen endoscopically resected specimens of early colorectal cancer (CRC) show high-risk features, surgery should be performed based on current guidelines because of the high-risk of lymph node metastasis (LNM). The aim of this study was to determine the utility of an artificial intelligence (AI) with deep learning (DL) of hematoxylin and eosin (H&E)-stained endoscopic resection specimens without manual-pixel-level annotation for predicting LNM in T1 CRC. In addition, we assessed AI performance for patients with only submucosal (SM) invasion depth of 1000 to 2000 μm known to be difficult to predict LNM in clinical practice.MethodsH&E-stained whole slide images (WSIs) were scanned for endoscopic resection specimens of 400 patients who underwent endoscopic treatment for newly diagnosed T1 CRC with additional surgery. The area under the curve (AUC) of the receiver operating characteristic curve was used to determine the accuracy of AI for predicting LNM with a fivefold cross-validation in the training set and in a held-out test set.ResultsWe developed an AI model using a two-step attention-based DL approach without clinical features (AUC, 0.764). Incorporating clinical features into the model did not improve its prediction accuracy for LNM. Our model reduced unnecessary additional surgery by 15.1% more than using the current guidelines (67.4% vs. 82.5%). In patients with SM invasion depth of 1000 to 2000 μm, the AI avoided 16.1% of unnecessary additional surgery than using the JSCCR guidelines.ConclusionsOur study is the first to show that AI trained with DL of H&E-stained WSIs has the potential to predict LNM in T1 CRC using only endoscopically resected specimens with conventional histologic risk factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助memaclee采纳,获得10
刚刚
ljc完成签到,获得积分20
2秒前
oh应助柔弱亦寒采纳,获得10
2秒前
CM发布了新的文献求助10
3秒前
仁爱的尔蓝完成签到 ,获得积分10
3秒前
大个应助绝情继父采纳,获得10
4秒前
8秒前
8秒前
我爱零价铁完成签到,获得积分10
9秒前
10秒前
羽言完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
科目三应助不行就相比较采纳,获得10
13秒前
黄贰叁完成签到,获得积分10
14秒前
Ava应助典雅的惜萱采纳,获得10
14秒前
华W发布了新的文献求助10
14秒前
14秒前
123123发布了新的文献求助10
15秒前
15秒前
16秒前
memaclee完成签到,获得积分10
16秒前
可爱的函函应助ljc采纳,获得10
18秒前
ll发布了新的文献求助10
18秒前
海洋球发布了新的文献求助10
19秒前
Dragon完成签到,获得积分10
20秒前
okk完成签到 ,获得积分10
20秒前
22秒前
Zhang完成签到,获得积分10
23秒前
23秒前
英俊的铭应助CM采纳,获得10
24秒前
Akim应助科研通管家采纳,获得10
24秒前
CodeCraft应助科研通管家采纳,获得10
24秒前
完美世界应助科研通管家采纳,获得10
24秒前
我是老大应助科研通管家采纳,获得10
24秒前
Ava应助科研通管家采纳,获得10
24秒前
SciGPT应助科研通管家采纳,获得10
24秒前
CodeCraft应助科研通管家采纳,获得10
24秒前
FashionBoy应助科研通管家采纳,获得10
24秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999224
求助须知:如何正确求助?哪些是违规求助? 3538589
关于积分的说明 11274664
捐赠科研通 3277444
什么是DOI,文献DOI怎么找? 1807597
邀请新用户注册赠送积分活动 883950
科研通“疑难数据库(出版商)”最低求助积分说明 810080