已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting Indium Phosphide Quantum Dot Properties from Synthetic Procedures Using Machine Learning

化学空间 磷化铟 计算机科学 量子点 磷化物 材料科学 机器学习 纳米技术 算法 化学 光电子学 生物化学 药物发现 冶金 砷化镓
作者
Hao Nguyen,Florence Y. Dou,Nayon Park,Shenwei Wu,Harrison Sarsito,Benedicte Diakubama,Helen Larson,Emily Nishiwaki,Micaela Homer,Melanie N. Cash,Brandi M. Cossairt
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (14): 6296-6311 被引量:19
标识
DOI:10.1021/acs.chemmater.2c00640
摘要

Prediction of chemical reaction outcomes using machine learning (ML) has emerged as a powerful tool for advancing materials synthesis. However, this approach requires large and diverse datasets, which are extremely limited in the field of nanomaterials synthesis due to inconsistent and nonstandardized reporting in the literature and a lack of understanding of synthetic mechanisms. In this study, we extracted parameters of InP quantum dot (QD) syntheses as our inputs and resultant properties (absorption, emission, diameter) as our outputs from 72 publications. We "filled in" missing outputs using a data imputation method to prepare a complete dataset containing 216 entries for training and testing predictive ML models. We defined the descriptor space in two ways (condensed and extended) based on either chemical identity or the role of reagents to explore the best approach for categorizing input features. We achieved mean absolute errors (MAEs) as low as 20.29, 11.46, and 0.33 nm for absorption, emission, and diameter, respectively, with our best ML model. We used these models to deploy an accessible and interactive web app for designing syntheses of InP (https://share.streamlit.io/cossairt-lab/indium-phosphide/Hot_injection/hot_injection_prediction.py). Using this web app, we investigated chemical trends in InP syntheses, such as the effects of common additives, like zinc salts and trioctylphosphine. We also designed and conducted new experiments based on extensions of literature procedures and compared our experimentally measured properties to predictions, thus evaluating the "real-life" accuracy of our models. Conversely, we used inverse design to obtain InP QDs with specific properties. Finally, we applied the same approach to train, test, and launch predictive models for CdSe QDs by expanding a previously published dataset. Altogether, our data preprocessing method and ML implementations demonstrate the ability to design materials with targeted properties and explore underlying reaction mechanisms even when faced with limited data resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KOIKOI完成签到,获得积分10
1秒前
2秒前
科研兄发布了新的文献求助10
3秒前
4秒前
JamesPei应助抱抱采纳,获得10
4秒前
6秒前
9秒前
10秒前
14秒前
kakaa发布了新的文献求助10
16秒前
清爽达完成签到 ,获得积分10
19秒前
烟花应助李联洪采纳,获得10
21秒前
21秒前
一口袋的风完成签到,获得积分10
22秒前
淡蓝时光完成签到 ,获得积分10
24秒前
26秒前
张欣怡发布了新的文献求助10
26秒前
小鱼发布了新的文献求助10
28秒前
29秒前
30秒前
迷路的沛芹完成签到 ,获得积分0
30秒前
30秒前
30秒前
乐乐应助张欣怡采纳,获得10
31秒前
朴素梦蕊完成签到 ,获得积分10
31秒前
32秒前
beyond发布了新的文献求助10
34秒前
35秒前
35秒前
TaoJ发布了新的文献求助10
36秒前
了晨完成签到 ,获得积分10
36秒前
Ava应助饼大王采纳,获得10
37秒前
Meyako完成签到 ,获得积分0
38秒前
明亮小虾米完成签到,获得积分10
39秒前
39秒前
万事胜意完成签到 ,获得积分10
39秒前
lijin发布了新的文献求助10
40秒前
思源应助shinn采纳,获得10
41秒前
41秒前
chenyuns发布了新的文献求助30
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779519
求助须知:如何正确求助?哪些是违规求助? 5648009
关于积分的说明 15451956
捐赠科研通 4910775
什么是DOI,文献DOI怎么找? 2642871
邀请新用户注册赠送积分活动 1590541
关于科研通互助平台的介绍 1544954