Predicting Indium Phosphide Quantum Dot Properties from Synthetic Procedures Using Machine Learning

化学空间 磷化铟 计算机科学 量子点 磷化物 材料科学 机器学习 纳米技术 算法 化学 光电子学 生物化学 药物发现 冶金 砷化镓
作者
Hao Nguyen,Florence Y. Dou,Nayon Park,Shenwei Wu,Harrison Sarsito,Benedicte Diakubama,Helen Larson,Emily Nishiwaki,Micaela Homer,Melanie N. Cash,Brandi M. Cossairt
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (14): 6296-6311 被引量:19
标识
DOI:10.1021/acs.chemmater.2c00640
摘要

Prediction of chemical reaction outcomes using machine learning (ML) has emerged as a powerful tool for advancing materials synthesis. However, this approach requires large and diverse datasets, which are extremely limited in the field of nanomaterials synthesis due to inconsistent and nonstandardized reporting in the literature and a lack of understanding of synthetic mechanisms. In this study, we extracted parameters of InP quantum dot (QD) syntheses as our inputs and resultant properties (absorption, emission, diameter) as our outputs from 72 publications. We "filled in" missing outputs using a data imputation method to prepare a complete dataset containing 216 entries for training and testing predictive ML models. We defined the descriptor space in two ways (condensed and extended) based on either chemical identity or the role of reagents to explore the best approach for categorizing input features. We achieved mean absolute errors (MAEs) as low as 20.29, 11.46, and 0.33 nm for absorption, emission, and diameter, respectively, with our best ML model. We used these models to deploy an accessible and interactive web app for designing syntheses of InP (https://share.streamlit.io/cossairt-lab/indium-phosphide/Hot_injection/hot_injection_prediction.py). Using this web app, we investigated chemical trends in InP syntheses, such as the effects of common additives, like zinc salts and trioctylphosphine. We also designed and conducted new experiments based on extensions of literature procedures and compared our experimentally measured properties to predictions, thus evaluating the "real-life" accuracy of our models. Conversely, we used inverse design to obtain InP QDs with specific properties. Finally, we applied the same approach to train, test, and launch predictive models for CdSe QDs by expanding a previously published dataset. Altogether, our data preprocessing method and ML implementations demonstrate the ability to design materials with targeted properties and explore underlying reaction mechanisms even when faced with limited data resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坏苹果完成签到,获得积分10
刚刚
刚刚
领导范儿应助小诗采纳,获得10
刚刚
小杨发布了新的文献求助10
刚刚
卧镁铀钳发布了新的文献求助10
1秒前
wuwuwu1wu完成签到,获得积分20
2秒前
3秒前
3秒前
3秒前
李健应助雷子采纳,获得10
4秒前
英姑应助清脆的书桃采纳,获得10
5秒前
Lucas应助小女子常戚戚采纳,获得10
5秒前
小易同学发布了新的文献求助10
5秒前
19应助zyc采纳,获得10
5秒前
6秒前
落后的半梦完成签到,获得积分10
6秒前
无名花生完成签到 ,获得积分10
7秒前
李爱国应助dlr采纳,获得10
7秒前
王小志发布了新的文献求助10
7秒前
优秀如雪完成签到,获得积分10
10秒前
雪花发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
英俊的铭应助Andrew采纳,获得10
12秒前
水何澹澹完成签到,获得积分0
12秒前
小马发布了新的文献求助10
12秒前
着急的时光完成签到,获得积分10
13秒前
英俊的铭应助冷静的黑桃采纳,获得10
14秒前
14秒前
自信安南发布了新的文献求助10
15秒前
16秒前
儒雅的逍遥完成签到,获得积分20
16秒前
充电宝应助嘿嘿嘿采纳,获得10
16秒前
Yuying发布了新的文献求助10
16秒前
18秒前
zho关闭了zho文献求助
18秒前
Arty完成签到 ,获得积分10
19秒前
丘比特应助微弱de胖头采纳,获得10
19秒前
九命猫完成签到 ,获得积分10
19秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222211
求助须知:如何正确求助?哪些是违规求助? 2870793
关于积分的说明 8172331
捐赠科研通 2537863
什么是DOI,文献DOI怎么找? 1369824
科研通“疑难数据库(出版商)”最低求助积分说明 645597
邀请新用户注册赠送积分活动 619373