Predicting Indium Phosphide Quantum Dot Properties from Synthetic Procedures Using Machine Learning

化学空间 磷化铟 计算机科学 量子点 磷化物 材料科学 机器学习 纳米技术 算法 化学 光电子学 生物化学 药物发现 冶金 砷化镓
作者
Hao Nguyen,Florence Y. Dou,Nayon Park,Shenwei Wu,Harrison Sarsito,Benedicte Diakubama,Helen Larson,Emily Nishiwaki,Micaela Homer,Melanie N. Cash,Brandi M. Cossairt
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:34 (14): 6296-6311 被引量:19
标识
DOI:10.1021/acs.chemmater.2c00640
摘要

Prediction of chemical reaction outcomes using machine learning (ML) has emerged as a powerful tool for advancing materials synthesis. However, this approach requires large and diverse datasets, which are extremely limited in the field of nanomaterials synthesis due to inconsistent and nonstandardized reporting in the literature and a lack of understanding of synthetic mechanisms. In this study, we extracted parameters of InP quantum dot (QD) syntheses as our inputs and resultant properties (absorption, emission, diameter) as our outputs from 72 publications. We "filled in" missing outputs using a data imputation method to prepare a complete dataset containing 216 entries for training and testing predictive ML models. We defined the descriptor space in two ways (condensed and extended) based on either chemical identity or the role of reagents to explore the best approach for categorizing input features. We achieved mean absolute errors (MAEs) as low as 20.29, 11.46, and 0.33 nm for absorption, emission, and diameter, respectively, with our best ML model. We used these models to deploy an accessible and interactive web app for designing syntheses of InP (https://share.streamlit.io/cossairt-lab/indium-phosphide/Hot_injection/hot_injection_prediction.py). Using this web app, we investigated chemical trends in InP syntheses, such as the effects of common additives, like zinc salts and trioctylphosphine. We also designed and conducted new experiments based on extensions of literature procedures and compared our experimentally measured properties to predictions, thus evaluating the "real-life" accuracy of our models. Conversely, we used inverse design to obtain InP QDs with specific properties. Finally, we applied the same approach to train, test, and launch predictive models for CdSe QDs by expanding a previously published dataset. Altogether, our data preprocessing method and ML implementations demonstrate the ability to design materials with targeted properties and explore underlying reaction mechanisms even when faced with limited data resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tao完成签到,获得积分10
1秒前
QXS完成签到 ,获得积分10
2秒前
轴承完成签到 ,获得积分10
2秒前
刘城完成签到,获得积分20
2秒前
龙成阳完成签到,获得积分10
2秒前
Lvy完成签到,获得积分10
2秒前
周俊瑞完成签到,获得积分10
6秒前
范先生完成签到,获得积分10
6秒前
小彭完成签到,获得积分10
7秒前
快乐慕灵完成签到,获得积分10
8秒前
江你一军完成签到,获得积分10
8秒前
呐呐呐完成签到 ,获得积分10
9秒前
9秒前
lshao完成签到 ,获得积分10
9秒前
月亮上的猫完成签到,获得积分10
9秒前
李爱国应助叁月二采纳,获得10
10秒前
Qianyun完成签到,获得积分10
10秒前
君莫笑发布了新的文献求助10
11秒前
爱吃肥牛完成签到,获得积分10
11秒前
一块小白糖完成签到,获得积分10
11秒前
廖紊完成签到,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
14秒前
XS_QI完成签到 ,获得积分10
15秒前
充电宝应助xuda采纳,获得10
15秒前
自然棒棒糖完成签到,获得积分10
16秒前
四叶草完成签到 ,获得积分10
17秒前
鱼蛋丸子完成签到,获得积分10
18秒前
Aom完成签到,获得积分10
18秒前
Olsters完成签到,获得积分10
19秒前
19秒前
hunter完成签到,获得积分10
19秒前
20秒前
Miya_han完成签到,获得积分10
20秒前
20秒前
撒拉溪吧完成签到 ,获得积分10
21秒前
吃火锅不蘸料完成签到,获得积分10
21秒前
李媚完成签到,获得积分10
21秒前
马上动起来完成签到,获得积分10
22秒前
dhn123完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008933
求助须知:如何正确求助?哪些是违规求助? 3548669
关于积分的说明 11299538
捐赠科研通 3283228
什么是DOI,文献DOI怎么找? 1810311
邀请新用户注册赠送积分活动 886034
科研通“疑难数据库(出版商)”最低求助积分说明 811259