Connected On-Board Inert Gas Generation System with Real-Time Data Access & Machine Learning Approach for Predictive / Prognostics Maintenance

预言 班级(哲学) 计算机科学 预测性维护 辍学(神经网络) 数据存取 工程类 实时计算 汽车工程 可靠性工程 人工智能 机器学习 数据库
作者
Naveen Kumar,Shivaprasad Kotnadh,Arvind MorkondaHaribapu cEng,Rajesh Kanneboyina cEng,Manjunatha Rao cEng
出处
期刊:SAE International Journal of Advances and Current Practices in Mobility 卷期号:5 (2): 762-767
标识
DOI:10.4271/2022-26-0023
摘要

<div class="section abstract"><div class="htmlview paragraph">The purpose of the OBIGGS is to reduce the amount of oxygen in the fuel tank to a 'safe' level to significantly reduce the possibility of ignition of fuel vapors. There are circumstances where equipment of OBIGGS like ASMs, Ozone Converter Catalysts, etc. gets degraded earlier than the provided MTBF.</div><div class="htmlview paragraph">This paper studies the present conventional systems limitations, like due to memory constraints only the faults and limited shop data are being recorded, hence there is no provision to store/report the stream of data margins with which we can pass/fail the performance tests.</div><div class="htmlview paragraph">This paper also explains how a new design of the Connected concept achieves access to real-time data from the system and how the data is pushed to the cloud network. A connected solution for the OBIGGS is the technology to access real-time data (Systems LRUs Performance data and Custom data Parameters) from the Systems controller data bus, this data is further applied to AI/ML methods for predictive/prognostics features to compare why the performance of the ASMs in some systems may degrade quicker than others and to inform of when equipment of OBIGGS may need to be inspected/tested/replaced.</div><div class="htmlview paragraph">VOCs related to ASMs degradation, FQIS field issues, sensors, valves, and other equipment's data parameters can be monitored over time that would be of value and an interest in more details for the Suppliers, Manufacturers, and Customers side.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zetlynn发布了新的文献求助20
1秒前
小青虫发布了新的文献求助10
1秒前
单薄广山完成签到,获得积分10
1秒前
随风发布了新的文献求助10
2秒前
2秒前
Huang波完成签到,获得积分10
3秒前
今后应助crank采纳,获得10
3秒前
3秒前
huo应助Victoria采纳,获得10
3秒前
谦让谷菱完成签到,获得积分10
3秒前
4秒前
天天快乐应助毛毛采纳,获得10
4秒前
4秒前
CHEN123456完成签到,获得积分10
5秒前
yyl完成签到 ,获得积分10
5秒前
我是老大应助迷路又菱采纳,获得10
6秒前
liuzr完成签到 ,获得积分10
8秒前
少吃一口发布了新的文献求助10
8秒前
88发布了新的文献求助10
8秒前
无花果应助addi111采纳,获得10
9秒前
调皮凌雪发布了新的文献求助10
9秒前
李米关注了科研通微信公众号
10秒前
orixero应助赵wenjing采纳,获得10
10秒前
10秒前
史迪仔发布了新的文献求助10
11秒前
一小只完成签到,获得积分10
11秒前
11秒前
Wjh123456完成签到,获得积分10
12秒前
有急事完成签到,获得积分10
13秒前
14秒前
boboking完成签到,获得积分10
15秒前
15秒前
BlingBling完成签到,获得积分10
16秒前
科研通AI2S应助嘉的科研采纳,获得10
16秒前
17秒前
88完成签到,获得积分20
17秒前
18秒前
sky关闭了sky文献求助
18秒前
18秒前
wanci应助小小鱼采纳,获得10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3300503
求助须知:如何正确求助?哪些是违规求助? 2935166
关于积分的说明 8472075
捐赠科研通 2608856
什么是DOI,文献DOI怎么找? 1424405
科研通“疑难数据库(出版商)”最低求助积分说明 662011
邀请新用户注册赠送积分活动 645730