泰勒级数
数学
搭配(遥感)
理论(学习稳定性)
近似误差
移动最小二乘法
有限差分
函数逼近
应用数学
有限差分法
正则化无网格法
无网格法
功能(生物学)
系列(地层学)
数学分析
有限元法
奇异边界法
计算机科学
人工神经网络
边界元法
生物
物理
古生物学
机器学习
进化生物学
热力学
作者
Zhiyin Zheng,Xiaolin Li
标识
DOI:10.1016/j.camwa.2022.06.017
摘要
The generalized finite difference method (GFDM) is a typical meshless collocation method based on the Taylor series expansion and the moving least squares technique. In this paper, we first provide theoretical results of the meshless function approximation in the GFDM. Properties, stability and error estimation of the approximation are studied theoretically, and a stabilized approximation is proposed by revising the computational formulas of the original approximation. Then, we provide theoretical results consisting of error bound and condition number of the GFDM. Numerical results are finally provided to confirm these theoretical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI