A self-organizing map approach for constrained multi-objective optimization problems

人口 数学优化 进化算法 计算机科学 水准点(测量) 进化计算 概括性 最优化问题 自组织映射 计算智能 帕累托原理 约束(计算机辅助设计) 人工智能 数学 人工神经网络 地理 心理学 人口学 几何学 大地测量学 社会学 心理治疗师
作者
Chao He,Ming Li,Congxuan Zhang,Hao Chen,Peilong Zhong,Zhengxiu Li,Junhua Li
出处
期刊:Complex & Intelligent Systems 卷期号:8 (6): 5355-5375 被引量:10
标识
DOI:10.1007/s40747-022-00761-2
摘要

Abstract There exist many multi-objective optimization problems (MOPs) containing several inequality and equality constraints in practical applications, which are known as CMOPs. CMOPs pose great challenges for existing multi-objective evolutionary algorithms (MOEAs) since the difficulty in balancing the objective minimization and constraint satisfaction. Without loss of generality, the distribution of the Pareto set for a continuous m-objective CMOP can be regarded as a piecewise continuous manifold of dimension ( m − 1). According to this property, a self-organizing map (SOM) approach for constrained multi-objective optimization problems is proposed in this article. In the proposed approach, we adopt the strategy of two population evolution, in which one population is evolved by considering all the constraints and the other population is used to assist in exploring the areas. In the evolutionary stage, each population is assigned a self-organizing map for discovering the population distribution structure in the decision space. After the topological mapping, we utilize the extracted neighborhood relationship information to generate promising offspring solutions. Afterwards, the neuron weight vectors of SOM are updated by the objective vectors of the surviving offsprings. Through the proposed approach, we can make the population efficiently converge to the feasible region with suitable levels of diversity. In the experiments, we compare the proposed method with several state-of-the-art approaches by using 48 benchmark problems. The evaluation results indicate that the overwhelmingly superior performance of the proposed method over the other peer algorithms on most of the tested problems. The source code is available at https://github.com/hccccc92918/CMOSMA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助ddsyg126采纳,获得10
刚刚
yiling完成签到,获得积分20
1秒前
求助论文的人完成签到,获得积分10
1秒前
1秒前
capx完成签到,获得积分10
2秒前
2秒前
Zack完成签到,获得积分10
3秒前
cath完成签到,获得积分10
3秒前
科研鸟发布了新的文献求助10
4秒前
4秒前
当里个当完成签到,获得积分10
5秒前
sunshine完成签到,获得积分10
6秒前
6秒前
Estrella完成签到,获得积分10
7秒前
小马甲应助小太阳采纳,获得10
7秒前
ccchengzi发布了新的文献求助10
8秒前
大模型应助早晚会疯采纳,获得10
9秒前
cuckoo发布了新的文献求助10
9秒前
10秒前
11秒前
SciGPT应助小鱼儿采纳,获得10
12秒前
ddsyg126发布了新的文献求助10
14秒前
15秒前
虞紫山完成签到,获得积分10
15秒前
15秒前
17秒前
17秒前
地表飞猪应助leo采纳,获得10
19秒前
早晚会疯发布了新的文献求助10
21秒前
PANYIAO完成签到,获得积分10
21秒前
angelsknight发布了新的文献求助30
21秒前
cuckoo完成签到,获得积分10
22秒前
Zhang完成签到,获得积分10
22秒前
vvvv发布了新的文献求助30
22秒前
暄anbujun发布了新的文献求助10
23秒前
SYLH应助阿宋采纳,获得30
26秒前
反方向的枫完成签到,获得积分10
28秒前
一梦三四年完成签到 ,获得积分10
29秒前
暄anbujun完成签到,获得积分10
30秒前
幕白okk完成签到,获得积分10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966388
求助须知:如何正确求助?哪些是违规求助? 3511817
关于积分的说明 11160082
捐赠科研通 3246443
什么是DOI,文献DOI怎么找? 1793422
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388