A self-organizing map approach for constrained multi-objective optimization problems

人口 数学优化 进化算法 计算机科学 水准点(测量) 进化计算 概括性 最优化问题 自组织映射 计算智能 帕累托原理 约束(计算机辅助设计) 人工智能 数学 人工神经网络 地理 心理学 人口学 几何学 大地测量学 社会学 心理治疗师
作者
Chao He,Ming Li,Congxuan Zhang,Hao Chen,Peilong Zhong,Zhengxiu Li,Junhua Li
出处
期刊:Complex & Intelligent Systems 卷期号:8 (6): 5355-5375 被引量:10
标识
DOI:10.1007/s40747-022-00761-2
摘要

Abstract There exist many multi-objective optimization problems (MOPs) containing several inequality and equality constraints in practical applications, which are known as CMOPs. CMOPs pose great challenges for existing multi-objective evolutionary algorithms (MOEAs) since the difficulty in balancing the objective minimization and constraint satisfaction. Without loss of generality, the distribution of the Pareto set for a continuous m-objective CMOP can be regarded as a piecewise continuous manifold of dimension ( m − 1). According to this property, a self-organizing map (SOM) approach for constrained multi-objective optimization problems is proposed in this article. In the proposed approach, we adopt the strategy of two population evolution, in which one population is evolved by considering all the constraints and the other population is used to assist in exploring the areas. In the evolutionary stage, each population is assigned a self-organizing map for discovering the population distribution structure in the decision space. After the topological mapping, we utilize the extracted neighborhood relationship information to generate promising offspring solutions. Afterwards, the neuron weight vectors of SOM are updated by the objective vectors of the surviving offsprings. Through the proposed approach, we can make the population efficiently converge to the feasible region with suitable levels of diversity. In the experiments, we compare the proposed method with several state-of-the-art approaches by using 48 benchmark problems. The evaluation results indicate that the overwhelmingly superior performance of the proposed method over the other peer algorithms on most of the tested problems. The source code is available at https://github.com/hccccc92918/CMOSMA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
油菜花完成签到,获得积分10
1秒前
kkk完成签到,获得积分10
1秒前
其实是北北吖完成签到,获得积分10
1秒前
yqsf789发布了新的文献求助10
1秒前
wenhuanwenxian完成签到 ,获得积分10
1秒前
焦明准完成签到,获得积分10
2秒前
梦飞完成签到,获得积分10
2秒前
居然是我完成签到,获得积分10
2秒前
哒哒完成签到,获得积分10
2秒前
sindex完成签到,获得积分10
2秒前
WUYANG发布了新的文献求助10
3秒前
舒适的淇完成签到,获得积分10
4秒前
yi完成签到,获得积分10
4秒前
DADing完成签到,获得积分10
4秒前
临床医学研究中心完成签到,获得积分10
5秒前
淞淞于我完成签到 ,获得积分10
5秒前
yk完成签到 ,获得积分10
5秒前
燕燕发布了新的文献求助10
6秒前
灵寒完成签到 ,获得积分10
6秒前
orixero应助123采纳,获得10
6秒前
zjzjzhujun发布了新的文献求助10
7秒前
题西林壁完成签到,获得积分10
8秒前
Nnaao完成签到 ,获得积分10
8秒前
8秒前
嘟嘟完成签到,获得积分10
8秒前
木南完成签到,获得积分10
9秒前
9秒前
法侣完成签到,获得积分10
9秒前
感动水杯完成签到 ,获得积分10
10秒前
eternal_dreams完成签到 ,获得积分10
10秒前
搜集达人应助winni采纳,获得30
10秒前
Maglev完成签到,获得积分10
10秒前
你帅你有理完成签到,获得积分10
11秒前
浮游应助Tonald Yang采纳,获得10
11秒前
sos完成签到,获得积分10
11秒前
xiaoqianqian174完成签到,获得积分10
11秒前
Sarah完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
可爱的香菇完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482803
求助须知:如何正确求助?哪些是违规求助? 4583511
关于积分的说明 14390213
捐赠科研通 4512809
什么是DOI,文献DOI怎么找? 2473255
邀请新用户注册赠送积分活动 1459255
关于科研通互助平台的介绍 1432883