亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A self-organizing map approach for constrained multi-objective optimization problems

人口 数学优化 进化算法 计算机科学 水准点(测量) 进化计算 概括性 最优化问题 自组织映射 计算智能 帕累托原理 约束(计算机辅助设计) 人工智能 数学 人工神经网络 地理 心理学 人口学 几何学 大地测量学 社会学 心理治疗师
作者
Chao He,Ming Li,Congxuan Zhang,Hao Chen,Peilong Zhong,Zhengxiu Li,Junhua Li
出处
期刊:Complex & Intelligent Systems 卷期号:8 (6): 5355-5375 被引量:10
标识
DOI:10.1007/s40747-022-00761-2
摘要

Abstract There exist many multi-objective optimization problems (MOPs) containing several inequality and equality constraints in practical applications, which are known as CMOPs. CMOPs pose great challenges for existing multi-objective evolutionary algorithms (MOEAs) since the difficulty in balancing the objective minimization and constraint satisfaction. Without loss of generality, the distribution of the Pareto set for a continuous m-objective CMOP can be regarded as a piecewise continuous manifold of dimension ( m − 1). According to this property, a self-organizing map (SOM) approach for constrained multi-objective optimization problems is proposed in this article. In the proposed approach, we adopt the strategy of two population evolution, in which one population is evolved by considering all the constraints and the other population is used to assist in exploring the areas. In the evolutionary stage, each population is assigned a self-organizing map for discovering the population distribution structure in the decision space. After the topological mapping, we utilize the extracted neighborhood relationship information to generate promising offspring solutions. Afterwards, the neuron weight vectors of SOM are updated by the objective vectors of the surviving offsprings. Through the proposed approach, we can make the population efficiently converge to the feasible region with suitable levels of diversity. In the experiments, we compare the proposed method with several state-of-the-art approaches by using 48 benchmark problems. The evaluation results indicate that the overwhelmingly superior performance of the proposed method over the other peer algorithms on most of the tested problems. The source code is available at https://github.com/hccccc92918/CMOSMA .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活力竺完成签到,获得积分10
14秒前
iii完成签到 ,获得积分10
16秒前
32秒前
活力竺发布了新的文献求助10
38秒前
44秒前
英俊的铭应助余铸海采纳,获得10
1分钟前
1分钟前
余铸海发布了新的文献求助10
1分钟前
余铸海完成签到,获得积分10
1分钟前
1分钟前
2分钟前
andrele发布了新的文献求助10
2分钟前
2分钟前
2分钟前
熊一只发布了新的文献求助10
2分钟前
这个手刹不太灵完成签到 ,获得积分10
2分钟前
huo应助熊一只采纳,获得10
2分钟前
8R60d8应助熊一只采纳,获得20
2分钟前
李健应助熊一只采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
CipherSage应助活力竺采纳,获得10
2分钟前
月军完成签到,获得积分10
3分钟前
Chamsel完成签到,获得积分10
3分钟前
Perion完成签到 ,获得积分10
3分钟前
3分钟前
Owen应助Koko采纳,获得30
4分钟前
4分钟前
Jiong发布了新的文献求助50
4分钟前
酷波er应助Wei采纳,获得20
5分钟前
Jiong完成签到,获得积分10
5分钟前
5分钟前
5分钟前
Koko发布了新的文献求助30
5分钟前
Koko完成签到 ,获得积分20
6分钟前
清脆的夜云完成签到,获得积分10
6分钟前
ZXD1989完成签到 ,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
英姑应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311164
求助须知:如何正确求助?哪些是违规求助? 2943906
关于积分的说明 8516704
捐赠科研通 2619275
什么是DOI,文献DOI怎么找? 1432183
科研通“疑难数据库(出版商)”最低求助积分说明 664520
邀请新用户注册赠送积分活动 649810