数学
索波列夫空间
孤子
猜想
数学分析
残余物
初值问题
松驰对
梯度下降
空格(标点符号)
可积系统
数学物理
纯数学
物理
量子力学
非线性系统
人工神经网络
语言学
机器学习
计算机科学
哲学
算法
作者
Zhiqiang Li,Shou‐Fu Tian,Jin‐Jie Yang,Engui Fan
标识
DOI:10.1016/j.jde.2022.05.003
摘要
In this work, we employ the ∂¯-steepest descent method to investigate the Cauchy problem of the complex short pulse (CSP) equation with initial conditions in weighted Sobolev space H(R). Firstly, we successfully derive the Hamiltonian function of the CSP equation based on its Lax pair. Furthermore, the long time asymptotic behavior of the solution u(x,t) is derived in a fixed space-time cone S(y1,y2,v1,v2)={(y,t)∈R2:y=y0+vt,y0∈[y1,y2],v∈[v1,v2]}. On the basis of the resulting asymptotic behavior, we prove the soliton resolution conjecture of the CSP equation which includes the soliton term confirmed by N(I)-soliton on discrete spectrum and the t−12 order term on continuous spectrum with residual error up to O(t−1).
科研通智能强力驱动
Strongly Powered by AbleSci AI