FAR-Net: Fast Anchor Refining for Arbitrary-Oriented Object Detection

计算机科学 目标检测 特征(语言学) 卷积(计算机科学) 干扰(通信) 功能(生物学) 人工智能 特征提取 模式识别(心理学) 计算机视觉 人工神经网络 进化生物学 生物 频道(广播) 哲学 语言学 计算机网络
作者
Chenwei Deng,Donglin Jing,Yan Han,Shuliang Wang,Hongshuo Wang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:17
标识
DOI:10.1109/lgrs.2022.3144513
摘要

Compared with natural images, targets in remote-sensing images are often distributed with more flexible orientation, aspect ratio, and scale. Thus, anchor-based algorithms often employ plenty of preset anchors to encode the above-mentioned attributes in object detection tasks. However, they often suffer from the following issues: 1) significant computational burden caused by dense-sampling anchors; 2) serious background interference since many anchors only cover small parts of the actual target; and 3) feature misalignment between the targets with the preset anchors due to the absence of the most discriminant features for target extraction. Therefore, in this letter, a fast anchor refining network (FAR-Net) is advocated to address the remaining issues for arbitrary-oriented object detection in the remote-sensing field. To be specific, a rotation alignment module (RAM) and balanced regression loss function (BR-loss) are carefully designed in the FAR-Net. The RAM is capable of generating high-quality anchors based on a refinement convolution and adaptively aligning the convolutional features by complying with the anchor boxes to reduce redundant calculation. The BR-loss is designed by employing a balanced loss function to prevent misaligned anchors from causing major gradient descents, thereby achieving a more stable network training procedure. Extensive experiments on public remote-sensing datasets (HRSC2016 and UCAS-AOD) demonstrate the excellent detection performance of our algorithm in comparison with numerous existing detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Archer发布了新的文献求助10
刚刚
所所应助curryand采纳,获得10
刚刚
王昕澳完成签到,获得积分10
刚刚
馅饼完成签到,获得积分10
1秒前
1秒前
明亮无颜发布了新的文献求助10
3秒前
3秒前
搜集达人应助凉雨渲采纳,获得10
4秒前
5秒前
叮叮叮铛完成签到,获得积分10
7秒前
天天发布了新的文献求助10
7秒前
CaliU完成签到,获得积分10
7秒前
Murray发布了新的文献求助10
11秒前
基尔霍夫完成签到,获得积分10
12秒前
13秒前
16秒前
hhkj完成签到,获得积分20
17秒前
Ava应助zyb采纳,获得10
18秒前
ding应助Nefelibata采纳,获得10
19秒前
所所应助Yuciyy采纳,获得10
20秒前
wu发布了新的文献求助10
20秒前
寂寞的白凡完成签到,获得积分10
21秒前
小菲完成签到,获得积分10
21秒前
trial完成签到 ,获得积分10
22秒前
23秒前
23秒前
25秒前
25秒前
26秒前
Aisha完成签到,获得积分10
26秒前
CipherSage应助rnmlp采纳,获得10
28秒前
情怀应助催化民工采纳,获得10
29秒前
30秒前
顺心的惜蕊完成签到 ,获得积分10
30秒前
30秒前
顾茗发布了新的文献求助10
31秒前
wure10发布了新的文献求助10
32秒前
32秒前
33秒前
34秒前
高分求助中
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 450
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3166387
求助须知:如何正确求助?哪些是违规求助? 2817875
关于积分的说明 7917935
捐赠科研通 2477361
什么是DOI,文献DOI怎么找? 1319594
科研通“疑难数据库(出版商)”最低求助积分说明 632536
版权声明 602415