FAR-Net: Fast Anchor Refining for Arbitrary-Oriented Object Detection

计算机科学 目标检测 特征(语言学) 卷积(计算机科学) 干扰(通信) 功能(生物学) 人工智能 特征提取 模式识别(心理学) 计算机视觉 人工神经网络 计算机网络 哲学 语言学 频道(广播) 进化生物学 生物
作者
Chenwei Deng,Donglin Jing,Yuqi Han,Shuliang Wang,Hongshuo Wang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:20
标识
DOI:10.1109/lgrs.2022.3144513
摘要

Compared with natural images, targets in remote-sensing images are often distributed with more flexible orientation, aspect ratio, and scale. Thus, anchor-based algorithms often employ plenty of preset anchors to encode the above-mentioned attributes in object detection tasks. However, they often suffer from the following issues: 1) significant computational burden caused by dense-sampling anchors; 2) serious background interference since many anchors only cover small parts of the actual target; and 3) feature misalignment between the targets with the preset anchors due to the absence of the most discriminant features for target extraction. Therefore, in this letter, a fast anchor refining network (FAR-Net) is advocated to address the remaining issues for arbitrary-oriented object detection in the remote-sensing field. To be specific, a rotation alignment module (RAM) and balanced regression loss function (BR-loss) are carefully designed in the FAR-Net. The RAM is capable of generating high-quality anchors based on a refinement convolution and adaptively aligning the convolutional features by complying with the anchor boxes to reduce redundant calculation. The BR-loss is designed by employing a balanced loss function to prevent misaligned anchors from causing major gradient descents, thereby achieving a more stable network training procedure. Extensive experiments on public remote-sensing datasets (HRSC2016 and UCAS-AOD) demonstrate the excellent detection performance of our algorithm in comparison with numerous existing detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ABCofMEDICIBE发布了新的文献求助10
1秒前
枫叶荻花秋瑟瑟完成签到,获得积分10
2秒前
爆米花应助呵呵你个头采纳,获得10
3秒前
刘迪发布了新的文献求助10
3秒前
易川完成签到,获得积分10
3秒前
静文发布了新的文献求助10
5秒前
5秒前
5秒前
8秒前
Bin_Lau发布了新的文献求助10
8秒前
黄新绒完成签到 ,获得积分10
9秒前
10秒前
今后应助刘迪采纳,获得10
12秒前
15秒前
16秒前
Bin_Lau完成签到,获得积分10
16秒前
16秒前
17秒前
18秒前
夏夏发布了新的文献求助10
19秒前
19秒前
火星人发布了新的文献求助10
21秒前
21秒前
cindy发布了新的文献求助10
22秒前
yysghr发布了新的文献求助10
23秒前
Chelry完成签到,获得积分10
24秒前
Jmting发布了新的文献求助10
24秒前
Sou完成签到 ,获得积分20
24秒前
25秒前
酷波er应助夏夏采纳,获得10
28秒前
liuxingcen应助Chelry采纳,获得10
29秒前
烧炭匠完成签到,获得积分10
30秒前
31秒前
大鲨鱼完成签到 ,获得积分10
33秒前
量子星尘发布了新的文献求助10
34秒前
728完成签到,获得积分10
34秒前
qijia完成签到,获得积分10
35秒前
35秒前
ED应助zhi采纳,获得10
35秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961022
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134887
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790309
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150