计算机科学
多标签分类
人工智能
语义学(计算机科学)
判别式
机器学习
特征(语言学)
自编码
深度学习
模式识别(心理学)
自然语言处理
语言学
哲学
程序设计语言
作者
Jun-Yi Hang,Min-Ling Zhang
标识
DOI:10.1109/tpami.2021.3136592
摘要
In multi-label classification, the strategy of label-specific features has been shown to be effective to learn from multi-label examples by accounting for the distinct discriminative properties of each class label. However, most existing approaches exploit the semantic relations among labels as immutable prior knowledge, which may not be appropriate to constrain the learning process of label-specific features. In this paper, we propose to learn label semantics and label-specific features in a collaborative way. Accordingly, a deep neural network (DNN) based approach named CLIF, i.e. Collaborative Learning of label semantIcs and deep label-specific Features for multi-label classification, is proposed. By integrating a graph autoencoder for encoding semantic relations in the label space and a tailored feature-disentangling module for extracting label-specific features, CLIF is able to employ the learned label semantics to guide mining label-specific features and propagate label-specific discriminative properties to the learning process of the label semantics. In such a way, the learning of label semantics and label-specific features interact and facilitate with each other so that label semantics can provide more accurate guidance to label-specific feature learning. Comprehensive experiments on 14 benchmark data sets show that our approach outperforms other well-established multi-label classification algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI