Diagnosis of interior damage with a convolutional neural network using simulation and measurement data

卷积神经网络 学习迁移 计算机科学 深度学习 人工智能 特征(语言学) 人工神经网络 领域(数学) 模式识别(心理学) 热成像 机器学习 物理 纯数学 红外线的 哲学 光学 语言学 数学
作者
Yanqing Bao,Sankaran Mahadevan
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:21 (5): 2312-2328 被引量:10
标识
DOI:10.1177/14759217211056574
摘要

Current deep learning applications in structural health monitoring (SHM) are mostly related to surface damage such as cracks and rust. Methods using traditional image processing techniques (such as filtering and edge detection) usually face difficulties in diagnosing internal damage in thicker specimens of heterogeneous materials. In this paper, we propose a damage diagnosis framework using a deep convolutional neural network (CNN) and transfer learning, focusing on internal damage such as voids and cracks. We use thermography to study the heat transfer characteristics and infer the presence of damage in the structure. It is challenging to obtain sufficient data samples for training deep neural networks, especially in the field of SHM. Therefore we use finite element (FE) computer simulations to generate a large volume of training data for the deep neural network, considering multiple damage shapes and locations. These computer-simulated data are used along with pre-trained convolutional cores of a sophisticated computer vision-based deep convolutional network to facilitate effective transfer learning. The CNN automatically generates features for damage diagnosis as opposed to manual feature generation in traditional image processing. Systematic parameter selection study is carried out to investigate accuracy versus computational expense in generating the training data. The methodology is demonstrated with an example of damage diagnosis in concrete, a heterogeneous material, using both computer simulations and laboratory experiments. The combination of FE simulation, transfer learning and experimental data is found to achieve high accuracy in damage localization with affordable effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心尔阳发布了新的文献求助10
刚刚
刚刚
zhizhi完成签到,获得积分20
刚刚
聪明的我发布了新的文献求助10
1秒前
2秒前
2秒前
tang完成签到,获得积分10
3秒前
幽默鱼完成签到,获得积分10
5秒前
5秒前
5秒前
李欢发布了新的文献求助30
5秒前
尊敬寒松完成签到 ,获得积分10
6秒前
agoni关注了科研通微信公众号
6秒前
Ava应助Lin采纳,获得10
7秒前
细心珠完成签到,获得积分10
7秒前
7秒前
宫冷雁发布了新的文献求助10
8秒前
自由的樱桃完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
11秒前
ding应助我要发sci采纳,获得10
11秒前
13秒前
YY完成签到 ,获得积分10
13秒前
14秒前
14秒前
14秒前
Darwin111发布了新的文献求助10
16秒前
16秒前
wy.he应助单薄茗采纳,获得20
16秒前
xiaojian_291发布了新的文献求助10
17秒前
18秒前
热泪盈眶发布了新的文献求助10
18秒前
18秒前
19秒前
Owen应助十二月采纳,获得10
20秒前
赫山柳发布了新的文献求助30
23秒前
飘逸剑身完成签到,获得积分10
24秒前
甲乙发布了新的文献求助10
24秒前
25秒前
25秒前
25秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023511
求助须知:如何正确求助?哪些是违规求助? 3563520
关于积分的说明 11343006
捐赠科研通 3294978
什么是DOI,文献DOI怎么找? 1814866
邀请新用户注册赠送积分活动 889576
科研通“疑难数据库(出版商)”最低求助积分说明 813019