已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diagnosis of interior damage with a convolutional neural network using simulation and measurement data

卷积神经网络 学习迁移 计算机科学 深度学习 人工智能 特征(语言学) 人工神经网络 领域(数学) 模式识别(心理学) 热成像 机器学习 物理 纯数学 红外线的 哲学 光学 语言学 数学
作者
Yanqing Bao,Sankaran Mahadevan
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:21 (5): 2312-2328 被引量:10
标识
DOI:10.1177/14759217211056574
摘要

Current deep learning applications in structural health monitoring (SHM) are mostly related to surface damage such as cracks and rust. Methods using traditional image processing techniques (such as filtering and edge detection) usually face difficulties in diagnosing internal damage in thicker specimens of heterogeneous materials. In this paper, we propose a damage diagnosis framework using a deep convolutional neural network (CNN) and transfer learning, focusing on internal damage such as voids and cracks. We use thermography to study the heat transfer characteristics and infer the presence of damage in the structure. It is challenging to obtain sufficient data samples for training deep neural networks, especially in the field of SHM. Therefore we use finite element (FE) computer simulations to generate a large volume of training data for the deep neural network, considering multiple damage shapes and locations. These computer-simulated data are used along with pre-trained convolutional cores of a sophisticated computer vision-based deep convolutional network to facilitate effective transfer learning. The CNN automatically generates features for damage diagnosis as opposed to manual feature generation in traditional image processing. Systematic parameter selection study is carried out to investigate accuracy versus computational expense in generating the training data. The methodology is demonstrated with an example of damage diagnosis in concrete, a heterogeneous material, using both computer simulations and laboratory experiments. The combination of FE simulation, transfer learning and experimental data is found to achieve high accuracy in damage localization with affordable effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃醋的喵酱完成签到 ,获得积分10
2秒前
跳跃的摩托完成签到 ,获得积分10
3秒前
3秒前
不爱吃香菜完成签到 ,获得积分10
4秒前
敏感的钢铁侠完成签到,获得积分10
5秒前
Turbo完成签到,获得积分10
7秒前
8秒前
归尘发布了新的文献求助20
12秒前
852应助xibei采纳,获得10
14秒前
凤梨发布了新的文献求助10
15秒前
222完成签到,获得积分10
15秒前
小卡啦完成签到 ,获得积分10
15秒前
15秒前
高兴电脑应助Kashing采纳,获得20
19秒前
孤鸿.完成签到 ,获得积分10
19秒前
简单发布了新的文献求助10
21秒前
lulu完成签到 ,获得积分10
23秒前
稳重嘉熙完成签到,获得积分10
25秒前
酷波er应助222采纳,获得10
29秒前
30秒前
颜林林完成签到,获得积分10
31秒前
Little2完成签到,获得积分10
32秒前
wssamuel完成签到 ,获得积分10
33秒前
Jasper应助壹曳采纳,获得10
34秒前
will完成签到 ,获得积分10
38秒前
科研通AI2S应助花开富贵采纳,获得10
40秒前
Flubird完成签到,获得积分10
40秒前
43秒前
俏皮的采波完成签到 ,获得积分10
43秒前
47秒前
爆米花应助xuan采纳,获得10
53秒前
噗哧噗哧发布了新的文献求助10
53秒前
bobo发布了新的文献求助10
54秒前
充电宝应助忧虑的羊采纳,获得10
57秒前
57秒前
菜菜完成签到,获得积分10
57秒前
orixero应助旅途之人采纳,获得10
59秒前
xuan发布了新的文献求助10
1分钟前
天天快乐应助安详的谷槐采纳,获得30
1分钟前
FashionBoy应助风中远航采纳,获得10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307151
求助须知:如何正确求助?哪些是违规求助? 2940952
关于积分的说明 8499680
捐赠科研通 2615163
什么是DOI,文献DOI怎么找? 1428712
科研通“疑难数据库(出版商)”最低求助积分说明 663493
邀请新用户注册赠送积分活动 648355