Optimizing the charging protocol to address the self-discharge issues in rechargeable alkaline Zn-Co batteries

自放电 电化学 容量损失 限制 电池(电) 电极 化学 电压 材料科学 计算机科学 电气工程 工程类 功率(物理) 电解质 机械工程 物理化学 物理 量子力学
作者
Wenxu Shang,Wentao Yu,Xu Xiao,Yanyi Ma,Ziqi Chen,Meng Ni,Peng Tan
出处
期刊:Applied Energy [Elsevier]
卷期号:308: 118366-118366 被引量:20
标识
DOI:10.1016/j.apenergy.2021.118366
摘要

Aqueous rechargeable Zn-Co batteries feature intrinsic safety and excellent electrochemical performance, and zinc metal is cheap with abundant reserves. However, a key issue, self-discharge, which may be fatal to the application, is always overlooked. Herein, the self-discharge performance is investigated systematically for the first time, and in-depth charge–discharge mechanisms are analyzed. Based on a free-standing Co3O4 electrode, the insufficient utilization of the active material is found under a conventional galvanostatic charging process. Additionally, a dramatic attenuation in the open-circuit voltage is exhibited during the delay, leading to poor capacity retention. Through electrochemical tests and ex-situ characterization, the limited capacity and the severe self-discharge behavior are ascribed to the low amount and poor stability of the high valence state, respectively. Aiming at suppressing the self-discharge behavior, a novel charging protocol is proposed based on a new mechanism, which uses a time-controlling potentiostatic charging after the galvanostatic charging process. Using this strategy, the discharge capacity increases effectively by about 31.8% from 220 to 290 mA h g−1, and the capacity retention ratio after 10 h delay lifts from 72% to 90%. More importantly, the discharge capacity remains 100% after even 2500 cycles. This work puts forward a practical method for the operation of Zn-Co batteries, addresses the limiting issues for application, and greatly facilitates the improvement of this technology. Further, the results also inspire the research of other rechargeable Zn-based batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XL发布了新的文献求助10
刚刚
1秒前
小鱼应助等等采纳,获得10
1秒前
Jasper应助等等采纳,获得10
1秒前
1秒前
Hello应助粉色水蒸蛋采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
所所应助小吉麻麻采纳,获得10
3秒前
3秒前
世界小奇发布了新的文献求助10
3秒前
乐乐应助默默的含烟采纳,获得10
4秒前
ss发布了新的文献求助10
4秒前
4秒前
bjyx完成签到,获得积分10
5秒前
善学以致用应助111采纳,获得10
6秒前
loser发布了新的文献求助10
6秒前
6秒前
斯文若之发布了新的文献求助10
6秒前
走四方发布了新的文献求助10
6秒前
Ava应助yxy采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
XQJ发布了新的文献求助10
9秒前
10秒前
CUI完成签到,获得积分10
10秒前
10秒前
10秒前
ikutovaya完成签到,获得积分10
10秒前
畅快安白发布了新的文献求助10
11秒前
SciGPT应助研友_8QxayZ采纳,获得10
11秒前
脑洞疼应助璐璐核桃露采纳,获得10
11秒前
ho发布了新的文献求助50
12秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624763
求助须知:如何正确求助?哪些是违规求助? 4710606
关于积分的说明 14951556
捐赠科研通 4778691
什么是DOI,文献DOI怎么找? 2553391
邀请新用户注册赠送积分活动 1515355
关于科研通互助平台的介绍 1475679