Ensemble learning and tensor regularization for cone‐beam computed tomography‐based pelvic organ segmentation

分割 人工智能 锥束ct Sørensen–骰子系数 计算机科学 正规化(语言学) 计算机视觉 豪斯多夫距离 稳健性(进化) 医学影像学 基本事实 模式识别(心理学) 图像分割 计算机断层摄影术 医学 放射科 基因 化学 生物化学
作者
Hongyao Zhou,Minsong Cao,Younjin Min,Sangpil Yoon,Amar U. Kishan,Dan Ruan
出处
期刊:Medical Physics [Wiley]
卷期号:49 (3): 1660-1672 被引量:6
标识
DOI:10.1002/mp.15475
摘要

Cone-beam computed tomography (CBCT) is a widely accessible low-dose imaging approach compatible with on-table patient anatomy observation for radiotherapy. However, its use in comprehensive anatomy monitoring is hindered by low contrast and low signal-to-noise ratio and a large presence of artifacts, resulting in difficulty in identifying organ and structure boundaries either manually or automatically. In this study, we propose and develop an ensemble deep-learning model to segment post-prostatectomy organs automatically.We utilize the ensemble logic in various modules during the segmentation process to alleviate the impact of low image quality of CBCT. Specifically, (1) semantic attention was obtained from an ensemble 2.5D You-only-look-once detector to consistently define regions of interest, (2) multiple view-specific two-stream 2.5D segmentation networks were developed, using auxiliary high-quality CT data to aid CBCT segmentation, and (3) a novel tensor-regularized ensemble scheme was proposed to aggregate the estimates from multiple views and regularize the spatial integrity of the final segmentation.A cross-validation study achieved Dice similarity coefficient and mean surface distance of 0.779 ±$\pm$ 0.069 and 2.895 ±$\pm$ 1.496 mm for the rectum, and 0.915 ±$\pm$ 0.055 and 1.675 ±$\pm$ 1.311 mm for the bladder.The proposed ensemble scheme manages to enhance the geometric integrity and robustness of the contours derived from CBCT with light network components. The tensor regularization approach generates organ results conforming to anatomy and physiology, without compromising typical quantitative performance in Dice similarity coefficient and mean surface distance, to support further clinical interpretation and decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你好啊发布了新的文献求助10
1秒前
2秒前
小王完成签到,获得积分10
2秒前
LC发布了新的文献求助10
3秒前
白华苍松发布了新的文献求助20
4秒前
山水木发布了新的文献求助10
4秒前
rafa完成签到 ,获得积分10
5秒前
7秒前
公孙世往发布了新的文献求助10
8秒前
小王发布了新的文献求助30
8秒前
优秀紫菜完成签到,获得积分10
10秒前
11秒前
11秒前
光亮的莆完成签到,获得积分10
12秒前
Adeline发布了新的文献求助30
13秒前
188的浩完成签到 ,获得积分10
13秒前
14秒前
小二郎应助李小汁采纳,获得10
17秒前
19秒前
电磁很快学会应助Linyi采纳,获得10
19秒前
小蘑菇应助公孙世往采纳,获得10
20秒前
鲸落完成签到 ,获得积分10
24秒前
25秒前
Cheney完成签到 ,获得积分10
26秒前
尽如完成签到,获得积分10
28秒前
李小汁发布了新的文献求助10
29秒前
dnmd完成签到,获得积分10
29秒前
外向半青完成签到,获得积分20
31秒前
liu95完成签到 ,获得积分10
31秒前
LC完成签到,获得积分10
41秒前
壮壮女士完成签到,获得积分10
42秒前
44秒前
44秒前
BBQ完成签到,获得积分20
46秒前
cccyc完成签到,获得积分10
47秒前
48秒前
zhj发布了新的文献求助10
49秒前
BBQ发布了新的文献求助10
50秒前
科目三应助麻薯头头采纳,获得10
51秒前
楼亦玉完成签到,获得积分10
51秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137575
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787428
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300110
科研通“疑难数据库(出版商)”最低求助积分说明 625813
版权声明 601023