Ensemble learning and tensor regularization for cone‐beam computed tomography‐based pelvic organ segmentation

分割 人工智能 锥束ct Sørensen–骰子系数 计算机科学 正规化(语言学) 计算机视觉 豪斯多夫距离 稳健性(进化) 医学影像学 基本事实 模式识别(心理学) 图像分割 计算机断层摄影术 医学 放射科 生物化学 化学 基因
作者
Hongyao Zhou,Minsong Cao,Younjin Min,Sangpil Yoon,Amar U. Kishan,Dan Ruan
出处
期刊:Medical Physics [Wiley]
卷期号:49 (3): 1660-1672 被引量:6
标识
DOI:10.1002/mp.15475
摘要

Cone-beam computed tomography (CBCT) is a widely accessible low-dose imaging approach compatible with on-table patient anatomy observation for radiotherapy. However, its use in comprehensive anatomy monitoring is hindered by low contrast and low signal-to-noise ratio and a large presence of artifacts, resulting in difficulty in identifying organ and structure boundaries either manually or automatically. In this study, we propose and develop an ensemble deep-learning model to segment post-prostatectomy organs automatically.We utilize the ensemble logic in various modules during the segmentation process to alleviate the impact of low image quality of CBCT. Specifically, (1) semantic attention was obtained from an ensemble 2.5D You-only-look-once detector to consistently define regions of interest, (2) multiple view-specific two-stream 2.5D segmentation networks were developed, using auxiliary high-quality CT data to aid CBCT segmentation, and (3) a novel tensor-regularized ensemble scheme was proposed to aggregate the estimates from multiple views and regularize the spatial integrity of the final segmentation.A cross-validation study achieved Dice similarity coefficient and mean surface distance of 0.779 ±$\pm$ 0.069 and 2.895 ±$\pm$ 1.496 mm for the rectum, and 0.915 ±$\pm$ 0.055 and 1.675 ±$\pm$ 1.311 mm for the bladder.The proposed ensemble scheme manages to enhance the geometric integrity and robustness of the contours derived from CBCT with light network components. The tensor regularization approach generates organ results conforming to anatomy and physiology, without compromising typical quantitative performance in Dice similarity coefficient and mean surface distance, to support further clinical interpretation and decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感动忆霜发布了新的文献求助10
2秒前
2秒前
Orange应助栗子栗栗子采纳,获得10
3秒前
3秒前
拼搏靖巧完成签到,获得积分20
4秒前
5秒前
yzz发布了新的文献求助20
5秒前
ANGEK发布了新的文献求助10
5秒前
6秒前
7秒前
称心鸵鸟发布了新的文献求助10
7秒前
8秒前
jessiefuli发布了新的文献求助10
9秒前
lxz发布了新的文献求助10
9秒前
Kaz发布了新的文献求助10
9秒前
烟花应助布丁采纳,获得10
9秒前
善善关注了科研通微信公众号
9秒前
橘子海的夏天完成签到,获得积分10
12秒前
12秒前
12秒前
jessiefuli完成签到,获得积分20
13秒前
张鹏程完成签到,获得积分10
13秒前
14秒前
FKHY应助yzz采纳,获得20
14秒前
15秒前
鲨鱼辣椒完成签到,获得积分10
15秒前
16秒前
17秒前
18秒前
袁睿韬应助lumen采纳,获得10
19秒前
PYF完成签到,获得积分10
20秒前
20秒前
Vicki完成签到,获得积分10
21秒前
aixiaoming0503完成签到,获得积分10
21秒前
搜集达人应助lemon采纳,获得10
22秒前
22秒前
Owen应助半夏采纳,获得10
24秒前
鲨鱼辣椒发布了新的文献求助10
24秒前
迟到虞姬发布了新的文献求助10
24秒前
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962070
求助须知:如何正确求助?哪些是违规求助? 3508372
关于积分的说明 11140413
捐赠科研通 3240967
什么是DOI,文献DOI怎么找? 1791157
邀请新用户注册赠送积分活动 872793
科研通“疑难数据库(出版商)”最低求助积分说明 803371