Ensemble learning and tensor regularization for cone‐beam computed tomography‐based pelvic organ segmentation

分割 人工智能 锥束ct Sørensen–骰子系数 计算机科学 正规化(语言学) 计算机视觉 豪斯多夫距离 稳健性(进化) 医学影像学 基本事实 模式识别(心理学) 图像分割 计算机断层摄影术 医学 放射科 生物化学 化学 基因
作者
Hongyao Zhou,Minsong Cao,Younjin Min,Sangpil Yoon,Amar U. Kishan,Dan Ruan
出处
期刊:Medical Physics [Wiley]
卷期号:49 (3): 1660-1672 被引量:6
标识
DOI:10.1002/mp.15475
摘要

Cone-beam computed tomography (CBCT) is a widely accessible low-dose imaging approach compatible with on-table patient anatomy observation for radiotherapy. However, its use in comprehensive anatomy monitoring is hindered by low contrast and low signal-to-noise ratio and a large presence of artifacts, resulting in difficulty in identifying organ and structure boundaries either manually or automatically. In this study, we propose and develop an ensemble deep-learning model to segment post-prostatectomy organs automatically.We utilize the ensemble logic in various modules during the segmentation process to alleviate the impact of low image quality of CBCT. Specifically, (1) semantic attention was obtained from an ensemble 2.5D You-only-look-once detector to consistently define regions of interest, (2) multiple view-specific two-stream 2.5D segmentation networks were developed, using auxiliary high-quality CT data to aid CBCT segmentation, and (3) a novel tensor-regularized ensemble scheme was proposed to aggregate the estimates from multiple views and regularize the spatial integrity of the final segmentation.A cross-validation study achieved Dice similarity coefficient and mean surface distance of 0.779 ±$\pm$ 0.069 and 2.895 ±$\pm$ 1.496 mm for the rectum, and 0.915 ±$\pm$ 0.055 and 1.675 ±$\pm$ 1.311 mm for the bladder.The proposed ensemble scheme manages to enhance the geometric integrity and robustness of the contours derived from CBCT with light network components. The tensor regularization approach generates organ results conforming to anatomy and physiology, without compromising typical quantitative performance in Dice similarity coefficient and mean surface distance, to support further clinical interpretation and decision making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爆米花应助狗宅采纳,获得10
1秒前
兔兔不睡觉完成签到 ,获得积分10
1秒前
今后应助Cc采纳,获得10
1秒前
2秒前
wu发布了新的文献求助10
2秒前
hhh发布了新的文献求助10
2秒前
101发布了新的文献求助10
2秒前
2秒前
aich完成签到,获得积分10
3秒前
伶俐雪曼完成签到,获得积分10
3秒前
牧之完成签到,获得积分10
3秒前
YJ888发布了新的文献求助10
3秒前
乌冬面发布了新的文献求助20
4秒前
伞兵龙发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
丰富山柏完成签到,获得积分20
7秒前
Hello应助yz123采纳,获得10
8秒前
共享精神应助白若可依采纳,获得10
8秒前
研雪完成签到,获得积分10
8秒前
関电脑完成签到,获得积分10
8秒前
8秒前
Lucas应助mode采纳,获得10
8秒前
鲸鱼发布了新的文献求助10
9秒前
彭于晏应助mika采纳,获得10
9秒前
dxp发布了新的文献求助10
9秒前
Soul发布了新的文献求助10
9秒前
开元完成签到,获得积分10
9秒前
负责石头发布了新的文献求助10
10秒前
李爱国应助反方向的钟采纳,获得30
10秒前
10秒前
10秒前
从容襄发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
qwepirt发布了新的文献求助10
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646