A Novel Solution for EEG-based Emotion Recognition

计算机科学 脑电图 人工智能 模式识别(心理学) 卷积神经网络 情绪识别 动态时间归整 代表(政治) 特征学习 监督学习 情绪分类 深度学习 语音识别 机器学习 人工神经网络 心理学 精神科 政治 政治学 法学
作者
Zhuofan Xie,Mingzhang Zhou,Haixin Sun
标识
DOI:10.1109/icct52962.2021.9657922
摘要

Electroencephalogram (EEG) is widely utilized in emotion recognition because of its exceptional stability and high detection accuracy. However, large amounts of labeled EEG data are difficult to come by. Self-supervised representation learning with multi-transformation tasks is presented as an innovative solution for emotion recognition. The solution consists of two tasks: self-supervised representation learning and emotion recognition. Self-supervised learning is applied to learn high-level EEG representation from unlabeled data. Representation learning contains six different transformations to learn the high-level EEG representations comprehensively: noising, scaling, negating, horizontally flipping, permuting, and time-warping. Then the self-supervised network can recognize different EEG representations, after that the weights of convolutional layers are frozen and transferred to the emotion recognition network, and the ability to distinguish EEG is transferred too. This is the first work that self-supervised learning that has been used for emotion recognition using EEG signals to the best of our knowledge. The accuracy we achieved is 98.64% that higher than all known fully supervised methods, and self-supervised learning saves a tremendous amount of time for labeling data. This result is state-of-the-art until now. Our experiments prove that the application of self-supervised learning in EEG-based emotion recognition is feasible and effective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qiqi发布了新的文献求助10
1秒前
2秒前
JUdy完成签到,获得积分10
3秒前
lll完成签到,获得积分10
4秒前
4秒前
4秒前
小艾完成签到,获得积分10
5秒前
英姑应助含糊采纳,获得10
5秒前
柒月小鱼完成签到 ,获得积分10
5秒前
奋斗雁山发布了新的文献求助10
5秒前
5秒前
6秒前
这样很OK发布了新的文献求助10
6秒前
tay完成签到,获得积分20
9秒前
韦谷兰发布了新的文献求助10
10秒前
QQQ发布了新的文献求助10
10秒前
Bio应助哈哈采纳,获得30
10秒前
11秒前
11秒前
kkmedici发布了新的文献求助30
11秒前
叮咚完成签到,获得积分10
12秒前
不想完成签到,获得积分10
12秒前
这样很OK完成签到,获得积分10
13秒前
GXWFDC完成签到,获得积分10
13秒前
西瓜汁完成签到,获得积分10
13秒前
Lisa完成签到,获得积分20
14秒前
含糊发布了新的文献求助10
15秒前
QQQ完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
情怀应助QQQ采纳,获得10
18秒前
Lucas应助Likee采纳,获得10
18秒前
成就的面包完成签到,获得积分10
19秒前
19秒前
自觉羊完成签到 ,获得积分10
19秒前
冰琪完成签到,获得积分10
20秒前
20秒前
英俊的铭应助无限师采纳,获得30
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988838
求助须知:如何正确求助?哪些是违规求助? 3531250
关于积分的说明 11252914
捐赠科研通 3269838
什么是DOI,文献DOI怎么找? 1804820
邀请新用户注册赠送积分活动 881943
科研通“疑难数据库(出版商)”最低求助积分说明 809028