A Novel Solution for EEG-based Emotion Recognition

计算机科学 脑电图 人工智能 模式识别(心理学) 卷积神经网络 情绪识别 动态时间归整 代表(政治) 特征学习 监督学习 情绪分类 深度学习 语音识别 机器学习 人工神经网络 心理学 精神科 法学 政治 政治学
作者
Zhuofan Xie,Mingzhang Zhou,Haixin Sun
标识
DOI:10.1109/icct52962.2021.9657922
摘要

Electroencephalogram (EEG) is widely utilized in emotion recognition because of its exceptional stability and high detection accuracy. However, large amounts of labeled EEG data are difficult to come by. Self-supervised representation learning with multi-transformation tasks is presented as an innovative solution for emotion recognition. The solution consists of two tasks: self-supervised representation learning and emotion recognition. Self-supervised learning is applied to learn high-level EEG representation from unlabeled data. Representation learning contains six different transformations to learn the high-level EEG representations comprehensively: noising, scaling, negating, horizontally flipping, permuting, and time-warping. Then the self-supervised network can recognize different EEG representations, after that the weights of convolutional layers are frozen and transferred to the emotion recognition network, and the ability to distinguish EEG is transferred too. This is the first work that self-supervised learning that has been used for emotion recognition using EEG signals to the best of our knowledge. The accuracy we achieved is 98.64% that higher than all known fully supervised methods, and self-supervised learning saves a tremendous amount of time for labeling data. This result is state-of-the-art until now. Our experiments prove that the application of self-supervised learning in EEG-based emotion recognition is feasible and effective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fjh关注了科研通微信公众号
1秒前
bkagyin应助yxh295采纳,获得10
3秒前
YY发布了新的文献求助10
3秒前
研友_VZG7GZ应助everglow采纳,获得30
4秒前
4秒前
5秒前
共享精神应助RomanticMystery采纳,获得30
5秒前
5秒前
wsqg123发布了新的文献求助10
5秒前
6秒前
8秒前
ChenCC发布了新的文献求助10
9秒前
123发布了新的文献求助10
9秒前
9秒前
东风发布了新的文献求助10
10秒前
ggyy完成签到 ,获得积分20
11秒前
cetomacrogol发布了新的文献求助10
12秒前
12秒前
万能图书馆应助YY采纳,获得10
12秒前
13秒前
简单以冬完成签到 ,获得积分10
13秒前
英俊的铭应助执着的松鼠采纳,获得10
15秒前
zzz发布了新的文献求助10
15秒前
15秒前
hw发布了新的文献求助10
15秒前
XC完成签到,获得积分10
15秒前
发财达人完成签到,获得积分10
15秒前
Mr_老旭完成签到,获得积分20
15秒前
Lida完成签到,获得积分10
16秒前
开放的牛青关注了科研通微信公众号
16秒前
16秒前
w_应助酷酷雨筠采纳,获得10
16秒前
烟花应助YOLO采纳,获得10
17秒前
调研昵称发布了新的文献求助30
17秒前
qinswzaiyu发布了新的文献求助10
18秒前
effortless发布了新的文献求助20
19秒前
jialin完成签到,获得积分10
20秒前
20秒前
parade完成签到,获得积分10
20秒前
fjh发布了新的文献求助10
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3223022
求助须知:如何正确求助?哪些是违规求助? 2871793
关于积分的说明 8177057
捐赠科研通 2538658
什么是DOI,文献DOI怎么找? 1370749
科研通“疑难数据库(出版商)”最低求助积分说明 645870
邀请新用户注册赠送积分活动 619832