Visualizing Nucleation and Growth Process of Vanadium‐Supramolecular Nanoribbons Self‐Assembled by Rapid Cooling Method towards High‐Capacity Vanadium Nitride Anode Materials

材料科学 氮化钒 偏钒酸铵 成核 化学工程 超分子化学 纳米技术 氮化物 结晶学 有机化学 晶体结构 冶金 图层(电子) 化学 工程类
作者
Yunlong Yang,Yanqin Wang,Lei Zhao,Ying Liu,Fen Ran
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:12 (13) 被引量:38
标识
DOI:10.1002/aenm.202103158
摘要

Abstract The vanadium‐supramolecules and their derivatives are in high demand because of their huge potential applications in various fields, especially as electrodes for supercapacitors and batteries. However, the complex synthesis process is still a significant challenge. Furthermore, for these self‐assembly processes, the early reaction stages, intermediates, and details of reaction kinetics are still unknown. Here, an efficient approach of rapid cooling for large‐scale fabrication of melamine‐ammonium metavanadate (C 3 H 6 N 6 ‐NH 4 VO 3 ) supramolecular nanoribbons is reported, and the corresponding nucleation and growth process are visualized by using an in situ polarizing microscope. The thermally induced nucleation takes place within tens of seconds, and once the nucleus is formed, C 3 H 6 N 6 and NH 4 VO 3 begin to assemble into nanoribbons under thermal control and grow epitaxial around the already‐formed nuclei. The growth process is much slower than the nucleation, until all small molecules are consumed. Rapid heat induction (rapid cooling) and shear force induction (stirring) help to form a uniform and wider 2D sheet rather than fibers or ribbons. After pyrolysis, the vanadium‐supramolecules derived vanadium nitride (VN)/carbon nanoribbons present a mesoporous structure, which endows the VN/carbon with high capacitance of 266.3 F g −1 at 0.5 A g −1 . In addition, the relationship between various structures and their properties is systematically investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开放铅笔发布了新的文献求助10
刚刚
刚刚
Ava应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得30
刚刚
刚刚
刚刚
桐桐应助科研通管家采纳,获得10
1秒前
Frank应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
ypp完成签到,获得积分10
1秒前
在水一方应助阿龙采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
BareBear应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得30
1秒前
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
852应助yhh采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
ludong_0应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
鄂惜霜发布了新的文献求助30
2秒前
ludong_0应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
Frank应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
临时演员完成签到,获得积分0
2秒前
科研通AI2S应助福西西采纳,获得10
2秒前
畅快大象发布了新的文献求助10
2秒前
大个应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
Thea完成签到 ,获得积分10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
Animagus应助科研通管家采纳,获得20
3秒前
3秒前
Frank应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480141
求助须知:如何正确求助?哪些是违规求助? 4581340
关于积分的说明 14380127
捐赠科研通 4509924
什么是DOI,文献DOI怎么找? 2471597
邀请新用户注册赠送积分活动 1457999
关于科研通互助平台的介绍 1431756