Prediction of curing process for thermosetting prepreg compression molding process based on machine learning

固化(化学) 热固性聚合物 材料科学 人工神经网络 复合材料 有限元法 计算机科学 算法 机器学习 结构工程 工程类
作者
Jiatong Hou,Bo You,Jiazhong Xu,Tao Wang
出处
期刊:Polymer Composites [Wiley]
卷期号:43 (3): 1749-1762 被引量:22
标识
DOI:10.1002/pc.26494
摘要

Abstract In the curing process of thermosetting prepreg compression molding (PCM), the distribution of the temperature field and the curing degree field have an important influence on the performance of composites. Therefore, the establishment of method to accurately predict the temperature difference and the degree of cure (DoC) difference during the curing process is significance for improving the performance of composites. In this paper, three kinds of machine learning models are studied: back propagation (BP) neural network, genetic algorithm‐back propagation (GA‐BP) neural network, radial basis function (RBF) neural network, then predictive models based on finite element method (FEM) and machine learning models are proposed. In the double‐dwell curing curve, six typical parameters are selected as inputs; the maximum value of temperature, the maximum value of temperature overshoot, the maximum DoC difference, the curing time, these four parameters during the curing process are selected as outputs, then the rapid predictive model is established. Within the value range of the process parameters, the Latin hypercube sampling (LHS) method is used to select 100 sets of sample points, and after training on three predictive models, comparison, and verification are carried out. The results show that the predictive effect of the RBF model is the best. In these three models, the RBF model is more suitable for the performance prediction of composites PCM. In this article, the research provides the basis for the performance prediction of composites and the multiobjective optimization of the curing process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
刚刚
一一应助科研通管家采纳,获得10
刚刚
leesc94发布了新的文献求助30
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得50
刚刚
今后应助科研通管家采纳,获得30
刚刚
浮游应助科研通管家采纳,获得10
刚刚
嘞是举仔应助科研通管家采纳,获得10
1秒前
lcc应助科研通管家采纳,获得10
1秒前
东方元语应助科研通管家采纳,获得20
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
希望天下0贩的0应助ruirui采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
1秒前
lili完成签到,获得积分10
1秒前
爆米花应助科研通管家采纳,获得10
2秒前
吕凯迪应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
2秒前
HOAN应助科研通管家采纳,获得30
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
快迪应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
zwhy发布了新的文献求助20
3秒前
所所应助科研通管家采纳,获得10
3秒前
tuanheqi应助科研通管家采纳,获得150
3秒前
浮游应助科研通管家采纳,获得10
3秒前
lcc应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
吕凯迪应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
4秒前
胡佳庆发布了新的文献求助10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
Honeydukes完成签到,获得积分10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684488
求助须知:如何正确求助?哪些是违规求助? 5036727
关于积分的说明 15184287
捐赠科研通 4843754
什么是DOI,文献DOI怎么找? 2596869
邀请新用户注册赠送积分活动 1549511
关于科研通互助平台的介绍 1508027