Abstract In the curing process of thermosetting prepreg compression molding (PCM), the distribution of the temperature field and the curing degree field have an important influence on the performance of composites. Therefore, the establishment of method to accurately predict the temperature difference and the degree of cure (DoC) difference during the curing process is significance for improving the performance of composites. In this paper, three kinds of machine learning models are studied: back propagation (BP) neural network, genetic algorithm‐back propagation (GA‐BP) neural network, radial basis function (RBF) neural network, then predictive models based on finite element method (FEM) and machine learning models are proposed. In the double‐dwell curing curve, six typical parameters are selected as inputs; the maximum value of temperature, the maximum value of temperature overshoot, the maximum DoC difference, the curing time, these four parameters during the curing process are selected as outputs, then the rapid predictive model is established. Within the value range of the process parameters, the Latin hypercube sampling (LHS) method is used to select 100 sets of sample points, and after training on three predictive models, comparison, and verification are carried out. The results show that the predictive effect of the RBF model is the best. In these three models, the RBF model is more suitable for the performance prediction of composites PCM. In this article, the research provides the basis for the performance prediction of composites and the multiobjective optimization of the curing process.