SVIA dataset: A new dataset of microscopic videos and images for computer-aided sperm analysis

计算机科学 人工智能 模式识别(心理学) 公制(单位) 标准测试图像 分割 机器学习 图像(数学) 图像处理 运营管理 经济
作者
Ao Chen,Chen Li,Shuojia Zou,Md Mamunur Rahaman,Yu‐Dong Yao,Haoyuan Chen,Hechen Yang,Peng Zhao,Weiming Hu,Wanli Liu,Marcin Grzegorzek
出处
期刊:Biocybernetics and Biomedical Engineering [Elsevier]
卷期号:42 (1): 204-214 被引量:53
标识
DOI:10.1016/j.bbe.2021.12.010
摘要

Computer-Aided Sperm Analysis (CASA) is a widely studied topic in the diagnosis and treatment of male reproductive health. Although CASA has been evolving, there is still a lack of publicly available large-scale image datasets for CASA. To fill this gap, we provide the Sperm Videos and Images Analysis (SVIA) dataset, including three different subsets, subset-A, subset-B and subset-C, to test and evaluate different computer vision techniques in CASA. For subset-A, in order to test and evaluate the effectiveness of SVIA dataset for object detection, we use five representative object detection models and four commonly used evaluation metrics. For subset-B, in order to test and evaluate the effectiveness of SVIA dataset for image segmentation, we used eight representative methods and three standard evaluation metrics. Moreover, to test and evaluate the effectiveness of SVIA dataset for object tracking, we have employed the traditional kNN with progressive sperm (PR) as an evaluation metric and two deep learning models with three standard evaluation metrics. For subset-C, to prove the effectiveness of SVIA dataset for image denoising, nine denoising filters are used to denoise thirteen kinds of noise, and the mean structural similarity is calculated for evaluation. At the same time, to test and evaluate the effectiveness of SVIA dataset for image classification, we evaluate the results of twelve convolutional neural network models and six visual transformer models using four commonly used evaluation metrics. Through a series of experimental analyses and comparisons in this paper, it can be concluded that this proposed dataset can evaluate not only the functions of object detection, image segmentation, object tracking, image denoising, and image classification but also the robustness of object detection and image classification models. Therefore, SVIA dataset can fill the gap of the lack of large-scale public datasets in CASA and promote the development of CASA. Dataset is available at: https://github.com/Demozsj/Detection-Sperm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HEIKU应助科研通管家采纳,获得10
1秒前
碳烤小肥肠完成签到,获得积分10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
iNk应助科研通管家采纳,获得20
1秒前
HEIKU应助科研通管家采纳,获得10
1秒前
高贵花瓣应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
暮霭沉沉应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
小二郎应助甄人达采纳,获得10
2秒前
Clover04应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
2秒前
wanjie发布了新的文献求助10
2秒前
完美世界应助可暖采纳,获得10
2秒前
研友_8Wq6Mn发布了新的文献求助10
2秒前
大晨发布了新的文献求助10
2秒前
彭于晏应助xixi采纳,获得10
3秒前
傻傻乐发布了新的文献求助10
3秒前
sda发布了新的文献求助10
3秒前
周周完成签到 ,获得积分10
4秒前
4秒前
深爱不疑完成签到 ,获得积分10
4秒前
Sy0v0完成签到,获得积分10
4秒前
虚幻的青槐完成签到,获得积分10
4秒前
7777777完成签到,获得积分10
6秒前
谦让文昊完成签到,获得积分10
8秒前
鲤鱼问雁完成签到,获得积分10
8秒前
April完成签到,获得积分10
9秒前
俏皮的秋天完成签到,获得积分10
9秒前
达da完成签到,获得积分10
9秒前
mhq发布了新的文献求助10
10秒前
10秒前
111完成签到,获得积分10
11秒前
繁星与北斗完成签到,获得积分10
11秒前
陈大侠完成签到 ,获得积分10
11秒前
KONG发布了新的文献求助10
12秒前
13秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158960
求助须知:如何正确求助?哪些是违规求助? 2810082
关于积分的说明 7886047
捐赠科研通 2468944
什么是DOI,文献DOI怎么找? 1314470
科研通“疑难数据库(出版商)”最低求助积分说明 630632
版权声明 602012