FFEDN: Feature Fusion Encoder Decoder Network for Crack Detection

编码器 特征(语言学) 计算机科学 干扰(通信) 可靠性(半导体) 光学(聚焦) 代表(政治) 目标检测 人工智能 特征提取 解码方法 模式识别(心理学) 算法 计算机网络 光学 物理 频道(广播) 哲学 政治学 操作系统 功率(物理) 政治 法学 量子力学 语言学
作者
Chuanqi Liu,Chengguang Zhu,Xuan Xia,Jing Zhao,Haihui Long
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (9): 15546-15557 被引量:23
标识
DOI:10.1109/tits.2022.3141827
摘要

Crack detection plays a crucial role in structural health monitoring tasks to ensure the reliability of the transportation infrastructures. However, the automatic detection of cracks remains a challenging task due to the complicated background. Especially, tiny crack detection should be attached importance because of its weak feature and background interference. Therefore, an end-to-end network Feature Fusion Encoder Decoder Network (FFEDN) with two novel modules is proposed to improve the crack detection accuracy. For one thing, the representation capability for tiny cracks is enhanced by introducing the attention mechanism, which redistributes and fuses different features of both the encoder and the decoder. For another, because high-level feature contains less interference, a shape semantic prior module is developed to learn the shape prior map that provides the rough shape and location information of cracks. This map is fed into the lower-level feature and helps it focus on crack areas, thereby suppressing background interference. To demonstrate the effectiveness of the proposed network, several experiments are implemented on three publicly available crack datasets. Compared with state-of-the-art crack detection methods, the novel network shows better performance on all the six evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lyu发布了新的文献求助10
1秒前
2秒前
liangguangyuan完成签到 ,获得积分10
2秒前
从容芮应助美好斓采纳,获得30
3秒前
wanci应助凤凤采纳,获得10
3秒前
小k完成签到,获得积分20
3秒前
脑洞疼应助郑文涛采纳,获得10
5秒前
6秒前
小k发布了新的文献求助10
7秒前
冯不可完成签到,获得积分10
8秒前
9秒前
9秒前
黑暗炸鸡发布了新的文献求助30
9秒前
哈卷完成签到 ,获得积分10
9秒前
科研通AI2S应助难摧采纳,获得10
11秒前
赘婿应助abaaba采纳,获得10
11秒前
乐正念云完成签到,获得积分10
12秒前
泡泡完成签到,获得积分10
13秒前
jjb发布了新的文献求助10
13秒前
账户已注销应助渔舟唱晚采纳,获得30
13秒前
看看不要钱完成签到,获得积分10
14秒前
xy完成签到 ,获得积分20
16秒前
18秒前
哔哔鱼完成签到,获得积分10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
脑洞疼应助科研通管家采纳,获得30
19秒前
hehe应助科研通管家采纳,获得10
19秒前
Jasper应助科研通管家采纳,获得10
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
20秒前
隐形曼青应助科研通管家采纳,获得10
20秒前
盒子应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
jun完成签到 ,获得积分10
21秒前
乐乐应助黑暗炸鸡采纳,获得10
22秒前
22秒前
领导范儿应助清醒采纳,获得10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137423
求助须知:如何正确求助?哪些是违规求助? 2788470
关于积分的说明 7786719
捐赠科研通 2444666
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625731
版权声明 601023