A novel method for approaching the compatibility of tree biomass estimation by multi-task neural networks

均方误差 相容性(地球化学) 人工神经网络 数学 统计 计算机科学 环境科学 人工智能 工程类 化学工程
作者
Qigang Xu,Xiangdong Lei,Huiru Zhang
出处
期刊:Forest Ecology and Management [Elsevier]
卷期号:508: 120011-120011 被引量:8
标识
DOI:10.1016/j.foreco.2022.120011
摘要

It is important to guarantee the property of biological compatibility when estimating tree biomass of the total and components for carbon accounting under global climate change. The issue was successfully considered in traditional nonlinear regression models, but not for machine learning methods. A new method for approaching the compatibility of tree biomass estimation in ANN (Artificial Neural Network) was developed by using the multi-task loss function, which had the desire features of minimizing residuals and approaching biomass compatibility. The method was tested by two tree species biomass dataset and showed the desired feature. Leave-one-out validation results showed that comparing ANN model with simultaneously fitting 7 outputs (stem, bark, branch, leaf, crown, trunk, aboveground) and classical loss function, the RMSE of aboveground estimation (AGB) and the mean absolute relative difference between AGB and the sum of component biomass estimations from the model developed by our new method decreased from 166.864 (kg) to 154.860 (kg) and from 4.757% to 0.071%, respectively for Abies nephrolepis dataset, and from 49.18 (kg) to 33.060 (kg) and from 5.314% to 0.636%, respectively for Acer mono dataset. It provided a trade-off solution for the error accumulation and the compatibility among components and the total estimations when using ANN for tree biomass modelling, and was useful for carbon accounting using machine learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助澳澳采纳,获得10
刚刚
刚刚
风趣秋白完成签到,获得积分10
1秒前
木木发布了新的文献求助50
1秒前
1秒前
优秀剑愁完成签到 ,获得积分10
1秒前
点凌蝶完成签到,获得积分10
2秒前
motidfox完成签到,获得积分10
2秒前
Tumbleweed668发布了新的文献求助10
3秒前
3秒前
4秒前
Camellia发布了新的文献求助10
4秒前
5秒前
123完成签到,获得积分10
5秒前
Grondwet发布了新的文献求助10
5秒前
6秒前
崽崽在想什么完成签到,获得积分10
6秒前
6秒前
hadern发布了新的文献求助10
6秒前
贪玩的冰姬完成签到,获得积分10
6秒前
Fortune完成签到,获得积分10
6秒前
莉莉酱完成签到,获得积分10
7秒前
小张今晚有好梦-完成签到,获得积分10
8秒前
8秒前
pluto应助至秦采纳,获得10
9秒前
9秒前
贪玩若剑完成签到,获得积分10
9秒前
团子发布了新的文献求助10
10秒前
FashionBoy应助萧小妖采纳,获得10
10秒前
小明发布了新的文献求助10
10秒前
yang完成签到,获得积分10
10秒前
晨曦发布了新的文献求助10
11秒前
11秒前
sound发布了新的文献求助10
11秒前
iridium完成签到 ,获得积分10
12秒前
小二郎应助Kimi仔采纳,获得10
12秒前
IVY发布了新的文献求助10
12秒前
魔法翼龙完成签到,获得积分10
13秒前
hadern完成签到,获得积分20
13秒前
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304069
求助须知:如何正确求助?哪些是违规求助? 2938141
关于积分的说明 8486921
捐赠科研通 2612298
什么是DOI,文献DOI怎么找? 1426638
科研通“疑难数据库(出版商)”最低求助积分说明 662736
邀请新用户注册赠送积分活动 647301