A novel method for approaching the compatibility of tree biomass estimation by multi-task neural networks

均方误差 相容性(地球化学) 人工神经网络 数学 统计 计算机科学 环境科学 人工智能 工程类 化学工程
作者
Qigang Xu,Xiangdong Lei,Huiru Zhang
出处
期刊:Forest Ecology and Management [Elsevier BV]
卷期号:508: 120011-120011 被引量:8
标识
DOI:10.1016/j.foreco.2022.120011
摘要

It is important to guarantee the property of biological compatibility when estimating tree biomass of the total and components for carbon accounting under global climate change. The issue was successfully considered in traditional nonlinear regression models, but not for machine learning methods. A new method for approaching the compatibility of tree biomass estimation in ANN (Artificial Neural Network) was developed by using the multi-task loss function, which had the desire features of minimizing residuals and approaching biomass compatibility. The method was tested by two tree species biomass dataset and showed the desired feature. Leave-one-out validation results showed that comparing ANN model with simultaneously fitting 7 outputs (stem, bark, branch, leaf, crown, trunk, aboveground) and classical loss function, the RMSE of aboveground estimation (AGB) and the mean absolute relative difference between AGB and the sum of component biomass estimations from the model developed by our new method decreased from 166.864 (kg) to 154.860 (kg) and from 4.757% to 0.071%, respectively for Abies nephrolepis dataset, and from 49.18 (kg) to 33.060 (kg) and from 5.314% to 0.636%, respectively for Acer mono dataset. It provided a trade-off solution for the error accumulation and the compatibility among components and the total estimations when using ANN for tree biomass modelling, and was useful for carbon accounting using machine learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助feifei采纳,获得10
1秒前
风驻云停完成签到,获得积分10
1秒前
kgy完成签到,获得积分10
1秒前
liii发布了新的文献求助10
2秒前
幽默胜完成签到,获得积分10
2秒前
年轻的翠发布了新的文献求助10
3秒前
芒小果发布了新的文献求助10
3秒前
迅速的鹤完成签到,获得积分10
4秒前
4秒前
打打应助cc采纳,获得10
8秒前
8秒前
SYLH应助长江长采纳,获得10
9秒前
冷静初彤发布了新的文献求助30
9秒前
懒癌晚期完成签到,获得积分10
9秒前
茉莉莫离完成签到,获得积分20
9秒前
1101592875发布了新的文献求助30
11秒前
李三金嘻嘻完成签到,获得积分10
12秒前
12秒前
Lucas应助热心小松鼠采纳,获得10
12秒前
SciGPT应助热心小松鼠采纳,获得10
12秒前
在水一方应助热心小松鼠采纳,获得10
12秒前
FashionBoy应助热心小松鼠采纳,获得10
12秒前
隐形曼青应助热心小松鼠采纳,获得10
12秒前
搜集达人应助热心小松鼠采纳,获得30
13秒前
13秒前
Jasper应助热心小松鼠采纳,获得30
13秒前
彭于晏应助尊敬的青易采纳,获得10
13秒前
JamesPei应助热心小松鼠采纳,获得10
13秒前
13秒前
13秒前
13秒前
14秒前
14秒前
李健应助XuP采纳,获得10
14秒前
15秒前
斯通纳完成签到 ,获得积分10
17秒前
kmy完成签到 ,获得积分10
18秒前
1101592875完成签到,获得积分10
18秒前
18秒前
0610发布了新的文献求助10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966777
求助须知:如何正确求助?哪些是违规求助? 3512284
关于积分的说明 11162496
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874588
科研通“疑难数据库(出版商)”最低求助积分说明 804432