A novel method for approaching the compatibility of tree biomass estimation by multi-task neural networks

均方误差 相容性(地球化学) 人工神经网络 数学 统计 计算机科学 环境科学 人工智能 工程类 化学工程
作者
Qigang Xu,Xiangdong Lei,Huiru Zhang
出处
期刊:Forest Ecology and Management [Elsevier]
卷期号:508: 120011-120011 被引量:8
标识
DOI:10.1016/j.foreco.2022.120011
摘要

It is important to guarantee the property of biological compatibility when estimating tree biomass of the total and components for carbon accounting under global climate change. The issue was successfully considered in traditional nonlinear regression models, but not for machine learning methods. A new method for approaching the compatibility of tree biomass estimation in ANN (Artificial Neural Network) was developed by using the multi-task loss function, which had the desire features of minimizing residuals and approaching biomass compatibility. The method was tested by two tree species biomass dataset and showed the desired feature. Leave-one-out validation results showed that comparing ANN model with simultaneously fitting 7 outputs (stem, bark, branch, leaf, crown, trunk, aboveground) and classical loss function, the RMSE of aboveground estimation (AGB) and the mean absolute relative difference between AGB and the sum of component biomass estimations from the model developed by our new method decreased from 166.864 (kg) to 154.860 (kg) and from 4.757% to 0.071%, respectively for Abies nephrolepis dataset, and from 49.18 (kg) to 33.060 (kg) and from 5.314% to 0.636%, respectively for Acer mono dataset. It provided a trade-off solution for the error accumulation and the compatibility among components and the total estimations when using ANN for tree biomass modelling, and was useful for carbon accounting using machine learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
念念发布了新的文献求助10
1秒前
畅快的鱼发布了新的文献求助10
1秒前
搞怪藏今完成签到 ,获得积分10
2秒前
yu发布了新的文献求助10
2秒前
2秒前
qifa发布了新的文献求助10
2秒前
kingwhitewing完成签到,获得积分10
2秒前
3秒前
WTT发布了新的文献求助10
3秒前
仄兀完成签到,获得积分10
3秒前
四喜完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
Yenom完成签到 ,获得积分10
6秒前
7秒前
7秒前
SciGPT应助浩浩大人采纳,获得10
7秒前
迅速冰岚发布了新的文献求助10
7秒前
7秒前
WTT完成签到,获得积分20
8秒前
8秒前
苹果煎饼发布了新的文献求助10
8秒前
yan发布了新的文献求助10
8秒前
云肜发布了新的文献求助30
8秒前
Hello应助FatDanny采纳,获得10
9秒前
斯文败类应助娜行采纳,获得10
9秒前
庄小因完成签到,获得积分10
9秒前
热心市民小刘给热心市民小刘的求助进行了留言
9秒前
小钟完成签到,获得积分10
9秒前
徐慕源发布了新的文献求助10
9秒前
10秒前
深情安青应助任医生采纳,获得10
10秒前
10秒前
sherrinford完成签到,获得积分10
10秒前
科研通AI2S应助VDC采纳,获得10
11秒前
YAOYAO发布了新的文献求助10
11秒前
舒适豌豆完成签到,获得积分10
11秒前
Amber应助reck采纳,获得10
11秒前
Renhong完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678