A novel method for approaching the compatibility of tree biomass estimation by multi-task neural networks

均方误差 相容性(地球化学) 人工神经网络 数学 统计 计算机科学 环境科学 人工智能 工程类 化学工程
作者
Qigang Xu,Xiangdong Lei,Huiru Zhang
出处
期刊:Forest Ecology and Management [Elsevier BV]
卷期号:508: 120011-120011 被引量:11
标识
DOI:10.1016/j.foreco.2022.120011
摘要

It is important to guarantee the property of biological compatibility when estimating tree biomass of the total and components for carbon accounting under global climate change. The issue was successfully considered in traditional nonlinear regression models, but not for machine learning methods. A new method for approaching the compatibility of tree biomass estimation in ANN (Artificial Neural Network) was developed by using the multi-task loss function, which had the desire features of minimizing residuals and approaching biomass compatibility. The method was tested by two tree species biomass dataset and showed the desired feature. Leave-one-out validation results showed that comparing ANN model with simultaneously fitting 7 outputs (stem, bark, branch, leaf, crown, trunk, aboveground) and classical loss function, the RMSE of aboveground estimation (AGB) and the mean absolute relative difference between AGB and the sum of component biomass estimations from the model developed by our new method decreased from 166.864 (kg) to 154.860 (kg) and from 4.757% to 0.071%, respectively for Abies nephrolepis dataset, and from 49.18 (kg) to 33.060 (kg) and from 5.314% to 0.636%, respectively for Acer mono dataset. It provided a trade-off solution for the error accumulation and the compatibility among components and the total estimations when using ANN for tree biomass modelling, and was useful for carbon accounting using machine learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lokiki发布了新的文献求助10
1秒前
1秒前
WF发布了新的文献求助10
3秒前
3秒前
3秒前
糖果铺子完成签到,获得积分10
4秒前
式微完成签到,获得积分10
4秒前
LHP完成签到 ,获得积分10
5秒前
勤劳怜寒发布了新的文献求助20
5秒前
tengfei完成签到 ,获得积分10
5秒前
斯文败类应助M旭旭采纳,获得10
6秒前
十三给啊喔的求助进行了留言
6秒前
6秒前
鱼在哪儿发布了新的文献求助10
7秒前
7秒前
ZhouQixing完成签到,获得积分10
8秒前
8秒前
天天快乐应助珷玞采纳,获得10
8秒前
奶茶嘤嘤怪完成签到,获得积分10
9秒前
研友_ZGR70n完成签到 ,获得积分10
11秒前
11秒前
11秒前
12秒前
黄鹦鹉完成签到,获得积分10
12秒前
14秒前
ZhouQixing发布了新的文献求助10
14秒前
一二发布了新的文献求助10
14秒前
15秒前
xxjbuaa完成签到,获得积分10
16秒前
BCyu发布了新的文献求助10
17秒前
18秒前
乐观小蕊发布了新的文献求助10
20秒前
21秒前
852应助暖冬的向日葵采纳,获得10
22秒前
23秒前
镓氧锌钇铀应助斑鸠采纳,获得20
24秒前
大个应助从容的聋五采纳,获得10
24秒前
24秒前
SciGPT应助津海007采纳,获得10
25秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5218829
求助须知:如何正确求助?哪些是违规求助? 4392683
关于积分的说明 13676925
捐赠科研通 4255379
什么是DOI,文献DOI怎么找? 2334892
邀请新用户注册赠送积分活动 1332515
关于科研通互助平台的介绍 1286731