Two microfluidic chips based on Rayleigh surface acoustic waves for controllable synthesis of silver nanoparticles: A comparison

材料科学 微流控 混合(物理) 体积流量 炸薯条 电压 声表面波 声学 纳米技术 机械 计算机科学 电气工程 量子力学 电信 物理 工程类
作者
Wanghao Shen,Meng Wang,Xiaodong Sun,Guojun Liu,Zhiqiang Li,Shuying Liu
出处
期刊:Microchemical Journal [Elsevier]
卷期号:180: 107576-107576
标识
DOI:10.1016/j.microc.2022.107576
摘要

Based on the biocompatibility and non-invasive nature of acoustically driven microfluidics, two microfluidic chips with Rayleigh surface acoustic waves (SAWs) as the driving source are proposed for micro-scale mixing: traveling surface acoustic wave (TSAW) and standing surface acoustic wave (SSAW) chips. This paper presents the first comparison of the controllable synthesis of silver nanoparticles (AgNPs) by TSAW chip and SSAW chip. The effect of peak-to-peak voltage and inlet flow rate on the micro-mixing performance of the two chips is investigated in focus. First, based on the finite element theory, the simulation software COMSOL is used to compare and analyze the mixing performance of the two chips. Then, a series of experiments of AgNPs synthesis is carried out combining with the liquid-phase reduction method. The difference in the results is characterized by UV spectroscopy and transmission electron microscope(TEM). The simulation results reveal that, under the same conditions, the SSAW chip transmits more energy to the fluid, which can effectively disturb the fluid and destroy the laminar flow interface. That is, it is easier to achieve rapid and uniform mixing with a better micro-mixing effect. As the peak-to-peak voltage increases or the inlet flow rate relatively decreases, the mixing effect of the SSAW chip gradually becomes better. However, experimental results indicate that the TSAW chip can synthesize AgNPs with higher concentration, better monodispersity, and smaller size deviation. As the peak-to-peak voltage increases or the inlet flow rate relatively decreases, it is easier to synthesize AgNPs with better quality. The comparison of the simulation and experimental results of the two chips can provide guidelines for the analysis of micro-scale mixing performance and practical applications of microfluidic chips driven by SAWs. • This paper presents the first comparison of the controllable synthesis of silver nanoparticles (AgNPs) by TSAW chip and SSAW chip. • The simulation results reveal that, under the same conditions, the SSAW chip transmits more energy to the fluid, which can effectively disturb the fluid and destroy the laminar flow interface. • Experimental results indicate that the TSAW chip can synthesize AgNPs with higher concentration, better monodispersity, and smaller size deviation. • The comparison of the simulation and experimental results of the two chips can provide guidelines for the analysis of micro-scale mixing performance and practical applications of microfluidic chips driven by SAWs. Based on the biocompatibility and non-invasive nature of acoustically driven microfluidics, two microfluidic chips with Rayleigh surface acoustic waves (SAWs) as the driving source are proposed for micro-scale mixing: traveling surface acoustic wave (TSAW) and standing surface acoustic wave (SSAW) chips. This paper presents the first comparison of the controllable synthesis of silver nanoparticles (AgNPs) by TSAW chip and SSAW chip. The effect of peak-to-peak voltage and inlet flow rate on the micro-mixing performance of the two chips is investigated in focus. First, based on the finite element theory, the simulation software COMSOL is used to compare and analyze the mixing performance of the two chips. Then, a series of experiments of AgNPs synthesis is carried out combining with the liquid-phase reduction method. The difference in the results is characterized by UV spectroscopy and transmission electron microscope (TEM). The simulation results reveal that, under the same conditions, the SSAW chip transmits more energy to the fluid, which can effectively disturb the fluid and destroy the laminar flow interface. That is, it is easier to achieve rapid and uniform mixing with a better micro-mixing effect. As the peak-to-peak voltage increases or the inlet flow rate relatively decreases, the mixing effect of the SSAW chip gradually becomes better. However, experimental results indicate that the TSAW chip can synthesize AgNPs with higher concentration, better monodispersity, and smaller size deviation. As the peak-to-peak voltage increases or the inlet flow rate relatively decreases, it is easier to synthesize AgNPs with better quality. The comparison of the simulation and experimental results of the two chips can provide guidelines for the analysis of micro-scale mixing performance and practical applications of microfluidic chips driven by SAWs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吉吉国王完成签到 ,获得积分10
3秒前
PengqianGuo完成签到,获得积分10
4秒前
4秒前
FashionBoy应助ccy采纳,获得10
5秒前
善学以致用应助优秀采纳,获得10
5秒前
7秒前
8秒前
如意二娘完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
nipanpan完成签到,获得积分10
11秒前
woodenfish发布了新的文献求助10
11秒前
三途完成签到 ,获得积分10
11秒前
科研通AI6.1应助¥#¥-11采纳,获得10
12秒前
12秒前
12秒前
源正生物发布了新的文献求助10
13秒前
小兔子发布了新的文献求助10
14秒前
serenity发布了新的文献求助10
14秒前
孙明浩发布了新的文献求助10
16秒前
17秒前
18秒前
12完成签到 ,获得积分10
19秒前
20秒前
Hearing胡发布了新的文献求助10
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
科目三应助科研通管家采纳,获得10
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
CipherSage应助科研通管家采纳,获得10
22秒前
科目三应助科研通管家采纳,获得10
22秒前
22秒前
CipherSage应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
CAOHOU应助科研通管家采纳,获得10
22秒前
YifanWang应助科研通管家采纳,获得30
22秒前
22秒前
思源应助科研通管家采纳,获得10
22秒前
YifanWang应助科研通管家采纳,获得30
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741705
求助须知:如何正确求助?哪些是违规求助? 5403758
关于积分的说明 15343201
捐赠科研通 4883272
什么是DOI,文献DOI怎么找? 2624986
邀请新用户注册赠送积分活动 1573801
关于科研通互助平台的介绍 1530722