Optimal Allocation of Surgery Blocks to Operating Rooms Under Uncertainty

启发式 数学优化 计算机科学 随机规划 集合(抽象数据类型) 对比度(视觉) 稳健优化 随机优化 变量(数学) 运筹学 数学 人工智能 数学分析 程序设计语言
作者
Brian T. Denton,Andrew J. Miller,Hari Balasubramanian,Todd R. Huschka
出处
期刊:Operations Research [Institute for Operations Research and the Management Sciences]
卷期号:58 (4-part-1): 802-816 被引量:335
标识
DOI:10.1287/opre.1090.0791
摘要

The allocation of surgeries to operating rooms (ORs) is a challenging combinatorial optimization problem. There is also significant uncertainty in the duration of surgical procedures, which further complicates assignment decisions. In this paper, we present stochastic optimization models for the assignment of surgeries to ORs on a given day of surgery. The objective includes a fixed cost of opening ORs and a variable cost of overtime relative to a fixed length-of-day. We describe two types of models. The first is a two-stage stochastic linear program with binary decisions in the first stage and simple recourse in the second stage. The second is its robust counterpart, in which the objective is to minimize the maximum cost associated with an uncertainty set for surgery durations. We describe the mathematical models, bounds on the optimal solution, and solution methodologies, including an easy-to-implement heuristic. Numerical experiments based on real data from a large health-care provider are used to contrast the results for the two models and illustrate the potential for impact in practice. Based on our numerical experimentation, we find that a fast and easy-to-implement heuristic works fairly well, on average, across many instances. We also find that the robust method performs approximately as well as the heuristic, is much faster than solving the stochastic recourse model, and has the benefit of limiting the worst-case outcome of the recourse problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫过客发布了新的文献求助10
刚刚
刚刚
深情凡灵发布了新的文献求助10
1秒前
马保国123发布了新的文献求助10
1秒前
胡须完成签到,获得积分10
2秒前
jjgod发布了新的文献求助10
2秒前
muomuo发布了新的文献求助10
3秒前
湘华完成签到,获得积分10
3秒前
渝州人发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
开放鸵鸟发布了新的文献求助10
5秒前
5秒前
温暖以蓝完成签到,获得积分20
5秒前
WTF完成签到,获得积分10
6秒前
花花花花完成签到,获得积分10
6秒前
franklvlei发布了新的文献求助10
7秒前
丘比特应助湘华采纳,获得10
8秒前
8秒前
AIA7完成签到,获得积分10
8秒前
towerman完成签到,获得积分10
9秒前
花花花花发布了新的文献求助10
10秒前
10秒前
xiaoziyi666发布了新的文献求助10
10秒前
muomuo完成签到,获得积分10
10秒前
10秒前
eli完成签到,获得积分10
11秒前
ZL发布了新的文献求助10
11秒前
Jason完成签到,获得积分10
11秒前
12秒前
12秒前
朴实的乐天完成签到,获得积分10
12秒前
13秒前
towerman发布了新的文献求助10
13秒前
科研通AI5应助愤怒的寄琴采纳,获得10
13秒前
搜集达人应助起司嗯采纳,获得30
13秒前
jjgod完成签到,获得积分10
14秒前
kilig完成签到 ,获得积分10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762