In this paper, we present a novel multimodal image fusion algorithm in the independent component analysis (ICA) domain. Region-based fusion of ICA coefficients is implemented, where segmentation is performed in the spatial domain and ICA coefficients from separate regions are fused separately. The ICA coefficients from given regions are consequently weighted using the Piella fusion metric in order to maximize the quality of the fused image. The proposed method exhibits significantly higher performance than the basic ICA algorithm and also shows improvement over other state-of-the-art algorithms