巴克豪森效应
缩放比例
伊辛模型
临界点(数学)
临界性
物理
统计物理学
临界指数
自组织临界性
临界现象
噪音(视频)
凝聚态物理
磁场
数学
相变
磁化
计算机科学
量子力学
几何学
人工智能
核物理学
图像(数学)
作者
Olga Perković,Karin A. Dahmen,James P. Sethna
标识
DOI:10.1103/physrevlett.75.4528
摘要
We explain Barkhausen noise in magnetic systems in terms of avalanches near a plain old critical point in the hysteretic zero-temperature random-field Ising model. The avalanche size distribution has a universal scaling function, making non-trivial predictions of the shape of the distribution up to 50\% above the critical point, where two decades of scaling are still observed. We simulate systems with up to $1000^3$ domains, extract critical exponents in 2, 3, 4, and 5 dimensions, compare with our 2d and $6-\epsilon$ predictions, and compare to a variety of experimental Barkhausen measurements.
科研通智能强力驱动
Strongly Powered by AbleSci AI