Rprop公司
反向传播
计算机科学
适应(眼睛)
前馈
人工智能
过程(计算)
算法
功能(生物学)
人工神经网络
循环神经网络
工程类
人工神经网络的类型
控制工程
物理
光学
操作系统
生物
进化生物学
作者
Martin Riedmiller,Heinrich Braun
出处
期刊:IEEE International Conference on Neural Networks
日期:2002-12-30
被引量:2809
标识
DOI:10.1109/icnn.1993.298623
摘要
A learning algorithm for multilayer feedforward networks, RPROP (resilient propagation), is proposed. To overcome the inherent disadvantages of pure gradient-descent, RPROP performs a local adaptation of the weight-updates according to the behavior of the error function. Contrary to other adaptive techniques, the effect of the RPROP adaptation process is not blurred by the unforeseeable influence of the size of the derivative, but only dependent on the temporal behavior of its sign. This leads to an efficient and transparent adaptation process. The capabilities of RPROP are shown in comparison to other adaptive techniques.< >
科研通智能强力驱动
Strongly Powered by AbleSci AI