Global trade will accelerate plant invasions in emerging economies under climate change

生物多样性 气候变化 温带气候 生态学 地理 外星人 分布(数学) 入侵物种 经济地理学 生物 人口 人口学 数学 人口普查 数学分析 社会学
作者
Hanno Seebens,Franz Essl,Wayne Dawson,Nicol Fuentes,Dietmar Moser,Jan Pergl,Petr Pyšek,Mark van Kleunen,Ewald Weber,Marten Winter,Bernd Blasius
出处
期刊:Global Change Biology [Wiley]
卷期号:21 (11): 4128-4140 被引量:356
标识
DOI:10.1111/gcb.13021
摘要

Abstract Trade plays a key role in the spread of alien species and has arguably contributed to the recent enormous acceleration of biological invasions, thus homogenizing biotas worldwide. Combining data on 60‐year trends of bilateral trade, as well as on biodiversity and climate, we modeled the global spread of plant species among 147 countries. The model results were compared with a recently compiled unique global data set on numbers of naturalized alien vascular plant species representing the most comprehensive collection of naturalized plant distributions currently available. The model identifies major source regions, introduction routes, and hot spots of plant invasions that agree well with observed naturalized plant numbers. In contrast to common knowledge, we show that the ‘imperialist dogma,’ stating that Europe has been a net exporter of naturalized plants since colonial times, does not hold for the past 60 years, when more naturalized plants were being imported to than exported from Europe. Our results highlight that the current distribution of naturalized plants is best predicted by socioeconomic activities 20 years ago. We took advantage of the observed time lag and used trade developments until recent times to predict naturalized plant trajectories for the next two decades. This shows that particularly strong increases in naturalized plant numbers are expected in the next 20 years for emerging economies in megadiverse regions. The interaction with predicted future climate change will increase invasions in northern temperate countries and reduce them in tropical and (sub)tropical regions, yet not by enough to cancel out the trade‐related increase.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
bkagyin应助4645采纳,获得10
1秒前
古月完成签到,获得积分10
1秒前
1秒前
SYLH应助冷傲迎梦采纳,获得10
2秒前
昏睡的蟠桃应助yydhda采纳,获得30
2秒前
小美女完成签到 ,获得积分10
2秒前
花开那年完成签到 ,获得积分10
2秒前
2秒前
2秒前
科研通AI5应助清风采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
木木发布了新的文献求助10
3秒前
长安完成签到,获得积分10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
紫轩发布了新的文献求助10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
万能图书馆应助小杨采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
4秒前
科研通AI2S应助韩大大采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
星辰大海应助努力的学采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
xiaohe应助科研通管家采纳,获得10
4秒前
5秒前
小董不懂完成签到,获得积分10
5秒前
科研通AI5应助陈cc采纳,获得10
6秒前
6秒前
旦旦完成签到,获得积分10
7秒前
8秒前
有夜空的地方必然有星河完成签到 ,获得积分10
8秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733849
求助须知:如何正确求助?哪些是违规求助? 3278067
关于积分的说明 10006761
捐赠科研通 2994206
什么是DOI,文献DOI怎么找? 1642969
邀请新用户注册赠送积分活动 780752
科研通“疑难数据库(出版商)”最低求助积分说明 749006