亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classification of acoustic emission data from buckling test of carbon fibre panel using unsupervised clustering techniques

声发射 聚类分析 计算机科学 模式识别(心理学) 信号处理 特征提取 信号(编程语言) 试验数据 人工智能 数据挖掘 声学 数字信号处理 物理 计算机硬件 程序设计语言
作者
Safaa Kh. Al-Jumaili,Karen M. Holford,Mark Eaton,John McCrory,M. R. Pearson,Rhys Pullin
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:14 (3): 241-251 被引量:35
标识
DOI:10.1177/1475921714564640
摘要

Acoustic emission is widely used for mechanical diagnostics and to characterise damage in composite materials. Distinction between different damage mechanisms is still one of the major challenges and remains an unresolved issue. The objective of cluster analysis is to separate an acoustic emission data set into multiple classes that reflect different acoustic emission sources. This article is concerned with the implementation of unsupervised clustering techniques to classify acoustic emission transients from a carbon fibre laminate buckling test. A new approach to signal feature extraction was utilised, whereby principal components provide signal features that represent the greatest data variance while remaining linearly uncorrelated with each other; feature selection was undertaken using a hierarchical clustering method and finally a cluster analysis was performed using k-means and Fuzzy C-means techniques. The aim of the work is to reduce the data required in the classification process, thereby reducing the processing time and computational power required, without significantly affecting the classification result. Thus, an approach which is more suited to online processing, allowing fast and efficient processing and storage of data is provided. The proposed unsupervised clustering analysis was able to separate acoustic emission signals into two different clusters that were correlated to the damage mechanisms observed. The results show that the clustering groups have a good fit with ultrasonic C-scan and digital image correlation strain data. The application of a clustering process that uses the most effective acoustic emission features as input data is an objective method, and this investigation shows that it may be a useful complement in the field of non-destructive evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
椒盐完成签到 ,获得积分10
6秒前
7秒前
10秒前
薄衫完成签到,获得积分10
14秒前
kbcbwb2002完成签到,获得积分10
14秒前
24秒前
羽羽完成签到 ,获得积分10
36秒前
38秒前
椒盐关注了科研通微信公众号
42秒前
薄衫发布了新的文献求助10
43秒前
柯萝完成签到,获得积分10
44秒前
倦鸟余花发布了新的文献求助10
47秒前
56秒前
笨笨盼易发布了新的文献求助10
58秒前
1分钟前
1分钟前
esyncoms发布了新的文献求助10
1分钟前
1分钟前
monad发布了新的文献求助10
1分钟前
思源应助笨笨盼易采纳,获得10
1分钟前
1分钟前
1分钟前
笨笨盼易完成签到,获得积分10
1分钟前
沛文发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
monad完成签到,获得积分10
1分钟前
1分钟前
沛文完成签到,获得积分10
1分钟前
烟花应助cc采纳,获得10
1分钟前
苑阿宇发布了新的文献求助10
1分钟前
1分钟前
kk完成签到,获得积分10
1分钟前
1分钟前
jiafang发布了新的文献求助10
1分钟前
1分钟前
开朗的从波完成签到,获得积分10
1分钟前
guan发布了新的文献求助10
1分钟前
墨风发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463596
求助须知:如何正确求助?哪些是违规求助? 3057019
关于积分的说明 9054942
捐赠科研通 2746921
什么是DOI,文献DOI怎么找? 1507154
科研通“疑难数据库(出版商)”最低求助积分说明 696405
邀请新用户注册赠送积分活动 695916