Boosting(机器学习)
学习迁移
计算机科学
机器学习
人工智能
回归
航程(航空)
数学
统计
工程类
航空航天工程
作者
David Pardoe,Peter Stone
出处
期刊:International Conference on Machine Learning
日期:2010-06-21
卷期号:: 863-870
被引量:161
摘要
The goal of transfer learning is to improve the learning of a new target concept given knowledge of related source concept(s). We introduce the first boosting-based algorithms for transfer learning that apply to regression tasks. First, we describe two existing classification transfer algorithms, ExpBoost and TrAdaBoost, and show how they can be modified for regression. We then introduce extensions of these algorithms that improve performance significantly on controlled experiments in a wide range of test domains.
科研通智能强力驱动
Strongly Powered by AbleSci AI