Scale and Orientation Invariant Text Segmentation for Born-Digital Compound Images

分割 人工智能 模式识别(心理学) 计算机科学 不变(物理) 比例(比率) 相似性(几何) 方向(向量空间) 数字图像 计算机视觉 数学 图像(数学) 图像处理 几何学 地图学 地理 数学物理
作者
Huan Yang,Shiqian Wu,Chenwei Deng,Weisi Lin
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:45 (3): 519-533 被引量:33
标识
DOI:10.1109/tcyb.2014.2330657
摘要

Many recent applications require text segmentation for born-digital compound images. To this end, we propose a coarse-to-fine framework for segmenting texts of arbitrary scales and orientations in born-digital compound images. In the coarse stage, the local image activity measure is designed based upon the variation distribution of characters, to highlight the difference between textual and pictorial regions. This stage outputs a coarse textual layer including textual regions as well as a few pictorial regions with high activity. In the fine stage, a textual connected component (TCC) based refinement is proposed to eliminate the survived pictorial regions. In particular, a scale and orientation invariant grouping algorithm is proposed to adaptively generate TCCs with uniform statistical features. The minimum average distance and morphological operations are employed to assist the formation of candidate TCCs. Then, three string-level features (i.e., shapeness, color similarity, and mean activity level) are designed to distinguish the true TCCs from the false positive ones that are formed by connecting the high activity pictorial components. Extensive experiments show that the proposed framework can segment textual regions precisely from born-digital compound images, while preserving the integrity of texts with varied scales and orientations, and avoiding over-connection of textual regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dominate完成签到,获得积分10
刚刚
2秒前
化合物来完成签到,获得积分10
3秒前
想吃洋芋完成签到,获得积分10
3秒前
xushuoyi完成签到,获得积分20
3秒前
有魅力的大船完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
今天看文献了吗完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
慕青应助落寞砖家采纳,获得10
6秒前
6秒前
7秒前
Feng发布了新的文献求助20
7秒前
小武发布了新的文献求助10
7秒前
善学以致用应助NONO采纳,获得10
8秒前
9秒前
9秒前
阿呷惹发布了新的文献求助30
9秒前
9秒前
whitebird完成签到,获得积分10
9秒前
aegon发布了新的文献求助30
10秒前
王一g完成签到,获得积分10
10秒前
ronnie完成签到,获得积分10
11秒前
刘欢发布了新的文献求助10
11秒前
1155发布了新的文献求助10
11秒前
11秒前
xch发布了新的文献求助10
11秒前
11秒前
frenchfriespie完成签到,获得积分10
12秒前
1234完成签到,获得积分10
12秒前
Emanon完成签到,获得积分10
13秒前
13秒前
研友_VZG7GZ应助朴素靖琪采纳,获得10
14秒前
小破网发布了新的文献求助10
14秒前
xzy998完成签到,获得积分0
14秒前
Young发布了新的文献求助10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307797
求助须知:如何正确求助?哪些是违规求助? 2941267
关于积分的说明 8502515
捐赠科研通 2615823
什么是DOI,文献DOI怎么找? 1429129
科研通“疑难数据库(出版商)”最低求助积分说明 663660
邀请新用户注册赠送积分活动 648617