X射线光电子能谱
镧
兴奋剂
阴极
拉曼光谱
锂(药物)
材料科学
煅烧
分析化学(期刊)
扫描电子显微镜
电化学
透射电子显微镜
氧化物
感应耦合等离子体
无机化学
纳米技术
化学工程
化学
电极
等离子体
光电子学
复合材料
光学
冶金
内分泌学
工程类
物理化学
催化作用
物理
医学
量子力学
生物化学
色谱法
作者
Ruizhi Yu,Gang Wang,Meihong Liu,Xiaohui Zhang,Xianyou Wang,Hongbo Shu,Xiukang Yang,Weihua Huang
标识
DOI:10.1016/j.jpowsour.2016.10.042
摘要
La-doped lithium-rich layered oxide material Li1.2Mn0.54−xNi0.13Co0.13LaxO2 (x = 0.01, 0.02, 0.03) is firstly synthesized via a solvothermal method and subsequent high-temperature calcination technique. The effects of La substitution for partial Mn on the structure and electrochemical performance of materials are systematically studied by inductively coupled plasma optical emission spectroscopy (ICP-OES), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscope (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and electrochemical measurement. The results reveal that La is effectively and homogenously doped into the materials, which can expand pathway for intercalation/deintercalation of Li+ ions. In addition, owing to La doping, the Li1.2Mn0.52Ni0.13Co0.13La0.02O2 sample exhibits 93.2% capacity retention after 100 cycles at 1 C. More importantly, this doping can effectively restrain the decrease of average discharge voltage upon cycling, which is one of the longstanding fatal drawbacks for lithium-rich layered oxide material. Moreover, La doping can stabilize the layered framework upon long term cycling and suppress voltage fading, and thus resulting in the better cycling performance. Additionally, the rate capability is also improved by La doping due to the higher diffusion velocity of Li+ ions.
科研通智能强力驱动
Strongly Powered by AbleSci AI