High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries

尖晶石 阴极 材料科学 电化学 自行车 化学工程 离子 氧化物 容量损失 纳米技术 电极 冶金 化学 物理化学 考古 有机化学 工程类 历史
作者
Prasant Kumar Nayak,Elena Levi,Judith Grinblat,Mikhael D. Levi,Boris Markovsky,N. Munichandraiah,Yang‐Kook Sun,Doron Aurbach
出处
期刊:Chemsuschem [Wiley]
卷期号:9 (17): 2404-2413 被引量:17
标识
DOI:10.1002/cssc.201600576
摘要

Li and Mn-rich layered oxides with the general structure x Li2 MnO3 ⋅(1-x) LiMO2 (M=Ni, Mn, Co) are promising cathode materials for Li-ion batteries because of their high specific capacity, which may be greater than 250 mA h g(-1) . However, these materials suffer from high first-cycle irreversible capacity, gradual capacity fading, limited rate capability and discharge voltage decay upon cycling, which prevent their commercialization. The decrease in average discharge voltage is a major issue, which is ascribed to a structural layered-to-spinel transformation upon cycling of these oxide cathodes in wide potential ranges with an upper limit higher than 4.5 V and a lower limit below 3 V versus Li. By using four elements systems (Li, Mn, Ni, O) with appropriate stoichiometry, it is possible to prepare high capacity composite cathode materials that contain LiMn1.5 Ni0.5 O4 and Lix Mny Niz O2 components. The Li and Mn-rich layered-spinel cathode materials studied herein exhibit a high specific capacity (≥200 mA h g(-1) ) with good capacity retention upon cycling in a wide potential domain (2.4-4.9 V). The effect of constituent phases on their electrochemical performance, such as specific capacity, cycling stability, average discharge voltage, and rate capability, are explored here. This family of materials can provide high specific capacity, high rate capability, and promising cycle life. Using Co-free cathode materials is also an obvious advantage of these systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHHHHN完成签到,获得积分10
刚刚
DrLiu完成签到,获得积分10
刚刚
顺子完成签到,获得积分20
1秒前
青黛发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
2秒前
破伤疯完成签到,获得积分10
2秒前
2秒前
脑洞疼应助积极向上采纳,获得10
2秒前
lejunia发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
zzz完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
600完成签到,获得积分10
4秒前
拉拉完成签到,获得积分10
4秒前
oooaini发布了新的文献求助10
4秒前
Lucas应助无风风采纳,获得10
4秒前
颖123完成签到,获得积分20
5秒前
破伤疯发布了新的文献求助10
5秒前
5秒前
潇洒台灯发布了新的文献求助10
5秒前
6秒前
可爱的函函应助fmmuxiaoqiang采纳,获得80
6秒前
阔达的小海豚完成签到,获得积分10
7秒前
在水一方应助xixi采纳,获得10
7秒前
科研通AI6应助七七采纳,获得10
7秒前
不摇碧莲发布了新的文献求助10
7秒前
findtruth完成签到,获得积分10
7秒前
宛儿发布了新的文献求助10
7秒前
香蕉诗蕊应助不安的未来采纳,获得10
7秒前
7秒前
8秒前
Ava应助斗转星移采纳,获得10
8秒前
852应助baekyu采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646071
求助须知:如何正确求助?哪些是违规求助? 4770105
关于积分的说明 15032959
捐赠科研通 4804652
什么是DOI,文献DOI怎么找? 2569176
邀请新用户注册赠送积分活动 1526218
关于科研通互助平台的介绍 1485748