吸附
水溶液
胺气处理
化学
铜
多胺
螯合作用
水介质
化学工程
无机化学
有机化学
生物化学
工程类
作者
Tai-Peng Chen,Fuqiang Liu,Ling Chen,Jie Gao,Chao Xu,Lanjuan Li,Aimin Li
摘要
Highly efficient coremoval of Cu(II) and p-nitrophenol (PNP) was accomplished using a newly synthesized polyamine chelating resin (CEAD) as compared to three other commercial resins. The mutual effects and inner mechanisms of their adsorption onto CEAD were systematically investigated by binary, preloading, thermodynamic, and dynamic adsorption procedures. PNP was adsorbed onto both hydrophobic and hydrophilic sites, while Cu(II) only interacted with hydrophilic amine group sites. In both preloading and binary systems, the adsorption of PNP was inhibited to the same degree by the presence of Cu(II) because of selective recognition and direct competition. On the other hand, the presence of PNP obviously enhanced the adsorption of Cu(II) by more than 7%, which was related to PNP loading on the hydrophobic surface. As proved by structural characterization, hydroxyl groups facing outward create new sites for coordination with Cu(II). Moreover, ionic strength exerted some positive influence on the properties of CEAD. Finally, more than 98% of PNP and 99% of Cu(II) could be sequentially recovered with dilute NaClO3 and HCl. These superior properties demonstrated with CEAD indicate that it could be applied to wastewaters containing both heavy metals and PNP, even for high saline aqueous media.
科研通智能强力驱动
Strongly Powered by AbleSci AI