白藜芦醇
胶质瘤
癌症研究
U87型
蛋白激酶B
医学
体内
细胞生长
药理学
PI3K/AKT/mTOR通路
干细胞
细胞培养
生物
信号转导
细胞生物学
生物化学
生物技术
遗传学
作者
Paul A. Clark,Saswati Bhattacharya,Ardem Elmayan,Soesiawati R. Darjatmoko,Bradley A. Thuro,Michael Yan,Paul R. van Ginkel,Arthur S. Polans,John S. Kuo
出处
期刊:Journal of Neurosurgery
[Journal of Neurosurgery Publishing Group]
日期:2017-05-01
卷期号:126 (5): 1448-1460
被引量:65
标识
DOI:10.3171/2016.1.jns152077
摘要
OBJECTIVE Glioblastoma multiforme (GBM) is an aggressive brain cancer with median survival of less than 2 years with current treatment. Glioblastomas exhibit extensive intratumoral and interpatient heterogeneity, suggesting that successful therapies should produce broad anticancer activities. Therefore, the natural nontoxic pleiotropic agent, resveratrol, was studied for antitumorigenic effects against GBM. METHODS Resveratrol's effects on cell proliferation, sphere-forming ability, and invasion were tested using multiple patient-derived GBM stem-like cell (GSC) lines and established U87 glioma cells, and changes in oncogenic AKT and tumor suppressive p53 were analyzed. Resveratrol was also tested in vivo against U87 glioma flank xenografts in mice by using multiple delivery methods, including direct tumor injection. Finally, resveratrol was delivered directly to brain tissue to determine toxicity and achievable drug concentrations in the brain parenchyma. RESULTS Resveratrol significantly inhibited proliferation in U87 glioma and multiple patient-derived GSC lines, demonstrating similar inhibitory concentrations across these phenotypically heterogeneous lines. Resveratrol also inhibited the sphere-forming ability suggesting anti–stem cell effects. Additionally, resveratrol blocked U87 glioma and GSC invasion in an in vitro Matrigel Transwell assay at doses similar to those mediating antiproliferative effects. In U87 glioma cells and GSCs, resveratrol reduced AKT phosphorylation and induced p53 expression and activation that led to transcription of downstream p53 target genes. Resveratrol administration via oral gavage or ad libitum in the water supply significantly suppressed GBM xenograft growth; intratumoral or peritumoral resveratrol injection further suppressed growth and approximated tumor regression. Intracranial resveratrol injection resulted in 100-fold higher local drug concentration compared with intravenous delivery, and with no apparent toxicity. CONCLUSIONS Resveratrol potently inhibited GBM and GSC growth and infiltration, acting partially via AKT deactivation and p53 induction, and suppressed glioblastoma growth in vivo. The ability of resveratrol to modulate AKT and p53, as well as reportedly many other antitumorigenic pathways, is attractive for therapy against a genetically heterogeneous tumor such as GBM. Although resveratrol exhibits low bioavailability when administered orally or intravenously, novel delivery methods such as direct injection (i.e., convection-enhanced delivery) could potentially be used to achieve and maintain therapeutic doses in the brain. Resveratrol's nontoxic nature and broad anti-GBM effects make it a compelling candidate to supplement current GBM therapies.
科研通智能强力驱动
Strongly Powered by AbleSci AI