Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data

推论 计算机科学 基因调控网络 标杆管理 算法 数据挖掘 基本事实 机器学习 人工智能 合成数据 理论计算机科学 基因 基因表达 生物 生物化学 业务 营销
作者
Aditya Pratapa,Amogh P. Jalihal,Jeffrey Law,Aditya Bharadwaj,T. M. Murali
标识
DOI:10.1101/642926
摘要

Abstract We present a comprehensive evaluation of state-of-the-art algorithms for inferring gene regulatory networks (GRNs) from single-cell gene expression data. We develop a systematic framework called BEELINE for this purpose. We use synthetic networks with predictable cellular trajectories as well as curated Boolean models to serve as the ground truth for evaluating the accuracy of GRN inference algorithms. We develop a strategy to simulate single-cell gene expression data from these two types of networks that avoids the pitfalls of previously-used methods. We selected 12 representative GRN inference algorithms. We found that the accuracy of these methods (measured in terms of AUROC and AUPRC) was moderate, by and large, although the methods were better in recovering interactions in the synthetic networks than the Boolean models. Techniques that did not require pseudotime-ordered cells were more accurate, in general. The observation that the endpoints of many false positive edges were connected by paths of length two in the Boolean models suggested that indirect effects may be predominant in the outputs of the algorithms we tested. The predicted networks were considerably inconsistent with each other, indicating that combining GRN inference algorithms using ensembles is likely to be challenging. Based on the results, we present some recommendations to users of GRN inference algorithms, including suggestions on how to create simulated gene expression datasets for testing them. BEELINE, which is available at http://github.com/murali-group/BEELINE under an open-source license, will aid in the future development of GRN inference algorithms for single-cell transcriptomic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助球球了采纳,获得10
2秒前
小咖张完成签到,获得积分10
2秒前
2秒前
脑洞疼应助y'y'y采纳,获得10
2秒前
斯文媚颜完成签到 ,获得积分10
3秒前
cyj发布了新的文献求助10
3秒前
淡定从霜完成签到 ,获得积分10
3秒前
霜降发布了新的文献求助10
4秒前
LayM发布了新的文献求助10
5秒前
所所应助GD采纳,获得10
5秒前
hala发布了新的文献求助10
6秒前
7秒前
须悦关注了科研通微信公众号
9秒前
LayM完成签到,获得积分10
9秒前
七七发布了新的文献求助10
10秒前
ding应助qqq采纳,获得10
11秒前
11秒前
欣慰的剑成给欣慰的剑成的求助进行了留言
12秒前
小滨发布了新的文献求助10
12秒前
傻傻的访天完成签到,获得积分10
12秒前
13秒前
13秒前
smh发布了新的文献求助10
13秒前
yyyang完成签到,获得积分10
14秒前
霜降完成签到,获得积分10
15秒前
冷艳紫南完成签到,获得积分10
16秒前
英俊的背包完成签到,获得积分10
16秒前
学术垃圾发布了新的文献求助10
16秒前
ll发布了新的文献求助10
16秒前
chengchengzi发布了新的文献求助10
17秒前
17秒前
18秒前
666发布了新的文献求助10
18秒前
彬彬哥发布了新的文献求助10
19秒前
orange完成签到,获得积分10
19秒前
20秒前
21秒前
21秒前
大个应助科研通管家采纳,获得10
23秒前
Akim应助科研通管家采纳,获得10
23秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170956
求助须知:如何正确求助?哪些是违规求助? 2821897
关于积分的说明 7936939
捐赠科研通 2482321
什么是DOI,文献DOI怎么找? 1322472
科研通“疑难数据库(出版商)”最低求助积分说明 633639
版权声明 602627