Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data

推论 计算机科学 基因调控网络 标杆管理 算法 数据挖掘 基本事实 机器学习 人工智能 合成数据 理论计算机科学 基因 基因表达 生物 生物化学 业务 营销
作者
Aditya Pratapa,Amogh P. Jalihal,Jeffrey Law,Aditya Bharadwaj,T. M. Murali
标识
DOI:10.1101/642926
摘要

Abstract We present a comprehensive evaluation of state-of-the-art algorithms for inferring gene regulatory networks (GRNs) from single-cell gene expression data. We develop a systematic framework called BEELINE for this purpose. We use synthetic networks with predictable cellular trajectories as well as curated Boolean models to serve as the ground truth for evaluating the accuracy of GRN inference algorithms. We develop a strategy to simulate single-cell gene expression data from these two types of networks that avoids the pitfalls of previously-used methods. We selected 12 representative GRN inference algorithms. We found that the accuracy of these methods (measured in terms of AUROC and AUPRC) was moderate, by and large, although the methods were better in recovering interactions in the synthetic networks than the Boolean models. Techniques that did not require pseudotime-ordered cells were more accurate, in general. The observation that the endpoints of many false positive edges were connected by paths of length two in the Boolean models suggested that indirect effects may be predominant in the outputs of the algorithms we tested. The predicted networks were considerably inconsistent with each other, indicating that combining GRN inference algorithms using ensembles is likely to be challenging. Based on the results, we present some recommendations to users of GRN inference algorithms, including suggestions on how to create simulated gene expression datasets for testing them. BEELINE, which is available at http://github.com/murali-group/BEELINE under an open-source license, will aid in the future development of GRN inference algorithms for single-cell transcriptomic data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助鹿lu采纳,获得10
2秒前
WD发布了新的文献求助10
2秒前
zho应助小嘉采纳,获得10
3秒前
读行千万完成签到,获得积分20
3秒前
叶子发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
kma完成签到,获得积分10
6秒前
8秒前
jaye_wang完成签到,获得积分10
9秒前
鹿lu发布了新的文献求助10
9秒前
欧阳静芙发布了新的文献求助10
10秒前
白昼学派完成签到,获得积分10
10秒前
11秒前
11秒前
共享精神应助潇洒的如蓉采纳,获得10
12秒前
12秒前
日向雏甜发布了新的文献求助10
14秒前
hou完成签到 ,获得积分10
15秒前
16秒前
zk001完成签到,获得积分10
16秒前
舒心发布了新的文献求助50
16秒前
123发布了新的文献求助10
17秒前
17秒前
鹿lu完成签到,获得积分10
17秒前
18秒前
18秒前
李健应助GTX2000采纳,获得10
18秒前
慕青应助威武诺言采纳,获得10
18秒前
美好的含蕊完成签到,获得积分10
19秒前
勤恳板栗发布了新的文献求助10
19秒前
19秒前
OIC发布了新的文献求助10
21秒前
kaka发布了新的文献求助10
21秒前
赘婿应助陈曦最帅的采纳,获得10
21秒前
FashionBoy应助membrane采纳,获得10
22秒前
黄轩发布了新的文献求助10
22秒前
22秒前
yufeng完成签到 ,获得积分10
23秒前
高分求助中
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 450
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
Not Equal : Towards an International Law of Finance 260
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3710956
求助须知:如何正确求助?哪些是违规求助? 3259723
关于积分的说明 9910137
捐赠科研通 2972852
什么是DOI,文献DOI怎么找? 1630153
邀请新用户注册赠送积分活动 773205
科研通“疑难数据库(出版商)”最低求助积分说明 744225