Facile Green Route to Ni/Co Oxide Nanoparticle Embedded 3D Graphitic Carbon Nanosheets for High Performance Hybrid Supercapacitor Devices

超级电容器 材料科学 纳米颗粒 氧化物 石墨烯 碳纤维 纳米技术 碳纳米颗粒 化学工程 复合数 电容 复合材料 电极 冶金 化学 工程类 物理化学
作者
Cuili Xiang,Yin Liu,Ying Yin,Pengru Huang,Yongjin Zou,Marcus Fehse,Zhe She,Fen Xu,Dipanjan Banerjee,Daniel Hermida‐Merino,Alessandro Longo,Heinz‐Bernhard Kraatz,Dermot F. Brougham,Bing Wu,Lixian Sun
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:2 (5): 3389-3399 被引量:81
标识
DOI:10.1021/acsaem.9b00202
摘要

The demand for energy storage systems with superior performance has led to the creation of hybrid supercapacitor device. With proper designs, the hybrid supercapacitive materials can achieve high performance while reducing the overall cost. Herein, a novel method is developed for preparing three-dimensional hierarchical graphitic carbon nanocomposites with highly dispersed mixed Co–Ni oxide nanoparticles (Co–Ni–O/3DG) by a facile one-pot process involving carbonization and subsequent oxidation of metal ion doped biopolymer precursors. The mixed metal nanoparticles produced during carbonization enabled a top-down preparation of 3D graphitic carbon nanosheets. The nanocomposites were fully characterized and showed excellent electrochemical performance supported by the DFT calculation. Specific capacitance of 1586 F·g–1 was achieved (current density 1.0 A·g–1), with capacitance retention of 94.5% after 10 000 cycles demonstrating exceptional cycling stability. In an asymmetric full-cell system using a Co–Ni–O/3DG positive electrode, high energy densities of 32.8–54.7 Wh kg–1 associated with very high power densities of 11358–748.6 W kg–1 were obtained, comparable to the most advanced contemporary supercapacitive materials, while they also possesses an improved cyclability as well as using biosourced staring materials, underlining the electrode's potential application in hybrid supercapacitor devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郑绒绒完成签到 ,获得积分10
刚刚
Meleo发布了新的文献求助10
1秒前
1秒前
1秒前
深情安青应助LLXY采纳,获得10
2秒前
服部平次发布了新的文献求助10
3秒前
神隐发布了新的文献求助30
4秒前
眯眯眼的衬衫应助山河采纳,获得10
4秒前
4秒前
苏打发布了新的文献求助10
4秒前
橙橙橙发布了新的文献求助30
4秒前
星辰大海应助999采纳,获得10
4秒前
5秒前
孤岛发布了新的文献求助30
5秒前
星辰大海应助自然水杯采纳,获得10
5秒前
yuan发布了新的文献求助10
6秒前
8秒前
10秒前
bji发布了新的文献求助10
10秒前
酷波er应助服部平次采纳,获得10
11秒前
Owen应助苏颖采纳,获得10
11秒前
苏打完成签到,获得积分10
11秒前
科研通AI2S应助奥特曼采纳,获得10
11秒前
小白完成签到 ,获得积分10
13秒前
lin发布了新的文献求助10
14秒前
faker完成签到 ,获得积分10
14秒前
lalala应助杜梦婷采纳,获得20
14秒前
天天快乐应助pink采纳,获得10
15秒前
Hello应助222采纳,获得10
15秒前
英俊的铭应助kangkang采纳,获得30
15秒前
我是老大应助热心的代桃采纳,获得10
15秒前
16秒前
黎缘发布了新的文献求助10
16秒前
四月一日完成签到,获得积分10
16秒前
一战发布了新的文献求助20
17秒前
17秒前
樾_应助外向的沅采纳,获得10
19秒前
宇文傲龙应助孤岛采纳,获得30
20秒前
20秒前
kingwill应助舒适的尔容采纳,获得20
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3482136
求助须知:如何正确求助?哪些是违规求助? 3071971
关于积分的说明 9125149
捐赠科研通 2763750
什么是DOI,文献DOI怎么找? 1516677
邀请新用户注册赠送积分活动 701746
科研通“疑难数据库(出版商)”最低求助积分说明 700512