Data synthesis based on generative adversarial networks

计算机科学 标识符 对抗制 生成语法 人工智能 生成对抗网络 数据挖掘 相容性(地球化学) 机器学习 理论计算机科学 深度学习 地球化学 地质学 程序设计语言
作者
Noseong Park,Mahmoud Mohammadi,Kshitij Gorde,Sushil Jajodia,Hong‐Kyu Park,Youngmin Kim
出处
期刊:Proceedings of the VLDB Endowment [VLDB Endowment]
卷期号:11 (10): 1071-1083 被引量:123
标识
DOI:10.14778/3231751.3231757
摘要

Privacy is an important concern for our society where sharing data with partners or releasing data to the public is a frequent occurrence. Some of the techniques that are being used to achieve privacy are to remove identifiers, alter quasi-identifiers, and perturb values. Unfortunately, these approaches suffer from two limitations. First, it has been shown that private information can still be leaked if attackers possess some background knowledge or other information sources. Second, they do not take into account the adverse impact these methods will have on the utility of the released data. In this paper, we propose a method that meets both requirements. Our method, called table-GAN, uses generative adversarial networks (GANs) to synthesize fake tables that are statistically similar to the original table yet do not incur information leakage. We show that the machine learning models trained using our synthetic tables exhibit performance that is similar to that of models trained using the original table for unknown testing cases. We call this property model compatibility. We believe that anonymization/perturbation/synthesis methods without model compatibility are of little value. We used four real-world datasets from four different domains for our experiments and conducted in-depth comparisons with state-of-the-art anonymization, perturbation, and generation techniques. Throughout our experiments, only our method consistently shows a balance between privacy level and model compatibility.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助oohQoo采纳,获得10
刚刚
难过盼海发布了新的文献求助10
刚刚
1秒前
Jasper应助JD采纳,获得10
1秒前
hanry完成签到 ,获得积分10
2秒前
木南完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
研友_Zlx3aZ发布了新的文献求助10
3秒前
4秒前
调皮秋凌完成签到,获得积分20
4秒前
4秒前
荣容完成签到 ,获得积分10
4秒前
5秒前
5秒前
Stone完成签到,获得积分10
5秒前
不吃橘子发布了新的文献求助30
5秒前
陈秋禹发布了新的文献求助10
6秒前
科研通AI6应助bnvgx采纳,获得10
6秒前
浮游应助派大星采纳,获得10
6秒前
6秒前
今后应助luchang123qq采纳,获得10
7秒前
7秒前
uniseen发布了新的文献求助10
8秒前
8秒前
汤飞柏发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
wzy发布了新的文献求助10
10秒前
10秒前
10秒前
静乖乖发布了新的文献求助10
10秒前
蜜桃奇迹发布了新的文献求助10
10秒前
轻薄的电脑应助蔬菜狗狗采纳,获得20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526219
求助须知:如何正确求助?哪些是违规求助? 4616313
关于积分的说明 14553183
捐赠科研通 4554594
什么是DOI,文献DOI怎么找? 2495952
邀请新用户注册赠送积分活动 1476311
关于科研通互助平台的介绍 1447978