GCN-GAN: A Non-linear Temporal Link Prediction Model for Weighted Dynamic Networks

计算机科学 快照(计算机存储) 动态网络分析 网络拓扑 图形 人工智能 理论计算机科学 计算机网络 操作系统
作者
Kai Lei,Meng Qin,Bo Bai,Gong Zhang,Min Yang
标识
DOI:10.1109/infocom.2019.8737631
摘要

In this paper, we generally formulate the dynamics prediction problem of various network systems (e.g., the prediction of mobility, traffic and topology) as the temporal link prediction task. Different from conventional techniques of temporal link prediction that ignore the potential non-linear characteristics and the informative link weights in the dynamic network, we introduce a novel non-linear model GCN-GAN to tackle the challenging temporal link prediction task of weighted dynamic networks. The proposed model leverages the benefits of the graph convolutional network (GCN), long short-term memory (LSTM) as well as the generative adversarial network (GAN). Thus, the dynamics, topology structure and evolutionary patterns of weighted dynamic networks can be fully exploited to improve the temporal link prediction performance. Concretely, we first utilize GCN to explore the local topological characteristics of each single snapshot and then employ LSTM to characterize the evolving features of the dynamic networks. Moreover, GAN is used to enhance the ability of the model to generate the next weighted network snapshot, which can effectively tackle the sparsity and the wide-value-range problem of edge weights in real-life dynamic networks. To verify the model's effectiveness, we conduct extensive experiments on four datasets of different network systems and application scenarios. The experimental results demonstrate that our model achieves impressive results compared to the state-of-the-art competitors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaoW完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
Rencal完成签到 ,获得积分10
1秒前
1秒前
1秒前
1秒前
辛勤秋柳完成签到,获得积分10
2秒前
2秒前
好好发布了新的文献求助10
3秒前
3秒前
夜三里关注了科研通微信公众号
3秒前
北极星发布了新的文献求助10
3秒前
zzj135291发布了新的文献求助10
3秒前
4秒前
沙漠水手发布了新的文献求助10
4秒前
结构女王发布了新的文献求助10
4秒前
mmzz完成签到,获得积分10
4秒前
4秒前
zhang发布了新的文献求助100
4秒前
落雁沙发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
传奇3应助洋芋土豆丝采纳,获得10
5秒前
6秒前
hxy完成签到,获得积分10
6秒前
识得故人发布了新的文献求助10
6秒前
S_pingan发布了新的文献求助10
7秒前
7秒前
陈晓迪1992发布了新的文献求助10
7秒前
8秒前
8秒前
张惠兰完成签到,获得积分10
8秒前
karmenda发布了新的文献求助10
8秒前
叶文洁发布了新的文献求助10
9秒前
Redamancy关注了科研通微信公众号
9秒前
清秀千兰发布了新的文献求助10
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583573
求助须知:如何正确求助?哪些是违规求助? 4667363
关于积分的说明 14766995
捐赠科研通 4609622
什么是DOI,文献DOI怎么找? 2529351
邀请新用户注册赠送积分活动 1498473
关于科研通互助平台的介绍 1467170