GCN-GAN: A Non-linear Temporal Link Prediction Model for Weighted Dynamic Networks

计算机科学 快照(计算机存储) 动态网络分析 网络拓扑 图形 人工智能 理论计算机科学 计算机网络 操作系统
作者
Kai Lei,Meng Qin,Bo Bai,Gong Zhang,Min Yang
标识
DOI:10.1109/infocom.2019.8737631
摘要

In this paper, we generally formulate the dynamics prediction problem of various network systems (e.g., the prediction of mobility, traffic and topology) as the temporal link prediction task. Different from conventional techniques of temporal link prediction that ignore the potential non-linear characteristics and the informative link weights in the dynamic network, we introduce a novel non-linear model GCN-GAN to tackle the challenging temporal link prediction task of weighted dynamic networks. The proposed model leverages the benefits of the graph convolutional network (GCN), long short-term memory (LSTM) as well as the generative adversarial network (GAN). Thus, the dynamics, topology structure and evolutionary patterns of weighted dynamic networks can be fully exploited to improve the temporal link prediction performance. Concretely, we first utilize GCN to explore the local topological characteristics of each single snapshot and then employ LSTM to characterize the evolving features of the dynamic networks. Moreover, GAN is used to enhance the ability of the model to generate the next weighted network snapshot, which can effectively tackle the sparsity and the wide-value-range problem of edge weights in real-life dynamic networks. To verify the model's effectiveness, we conduct extensive experiments on four datasets of different network systems and application scenarios. The experimental results demonstrate that our model achieves impressive results compared to the state-of-the-art competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
杏子应助晨霭微凉采纳,获得10
1秒前
crisis完成签到,获得积分10
1秒前
2秒前
3秒前
ddssa1988完成签到,获得积分10
3秒前
凤凰之玉完成签到 ,获得积分10
3秒前
ylbb发布了新的文献求助10
4秒前
LL发布了新的文献求助20
4秒前
4秒前
sh131发布了新的文献求助10
8秒前
Amanda发布了新的文献求助10
8秒前
8秒前
沈顺利毕业完成签到,获得积分10
8秒前
GX应助HEIEI采纳,获得10
9秒前
英姑应助易烊干洗采纳,获得10
9秒前
一二三完成签到,获得积分20
10秒前
因几发布了新的文献求助10
12秒前
小马甲应助ylbb采纳,获得10
12秒前
ED应助研友_Z11kkZ采纳,获得10
13秒前
vanilla完成签到 ,获得积分10
13秒前
流星完成签到,获得积分10
13秒前
14秒前
大个应助一二三采纳,获得10
15秒前
15秒前
粥粥完成签到,获得积分10
15秒前
wang完成签到,获得积分10
16秒前
16秒前
16秒前
思源应助博修采纳,获得10
17秒前
17秒前
17秒前
18秒前
迷人绿茶发布了新的文献求助10
19秒前
好玩和有趣完成签到,获得积分10
20秒前
lemperory完成签到,获得积分10
20秒前
别来无恙发布了新的文献求助10
20秒前
现代的访曼应助水晶李采纳,获得20
21秒前
谭小谭发布了新的文献求助10
22秒前
情怀应助sss采纳,获得10
22秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961189
求助须知:如何正确求助?哪些是违规求助? 3507456
关于积分的说明 11136282
捐赠科研通 3239926
什么是DOI,文献DOI怎么找? 1790545
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803152