GCN-GAN: A Non-linear Temporal Link Prediction Model for Weighted Dynamic Networks

计算机科学 快照(计算机存储) 动态网络分析 网络拓扑 图形 人工智能 理论计算机科学 计算机网络 操作系统
作者
Kai Lei,Meng Qin,Bo Bai,Gong Zhang,Min Yang
标识
DOI:10.1109/infocom.2019.8737631
摘要

In this paper, we generally formulate the dynamics prediction problem of various network systems (e.g., the prediction of mobility, traffic and topology) as the temporal link prediction task. Different from conventional techniques of temporal link prediction that ignore the potential non-linear characteristics and the informative link weights in the dynamic network, we introduce a novel non-linear model GCN-GAN to tackle the challenging temporal link prediction task of weighted dynamic networks. The proposed model leverages the benefits of the graph convolutional network (GCN), long short-term memory (LSTM) as well as the generative adversarial network (GAN). Thus, the dynamics, topology structure and evolutionary patterns of weighted dynamic networks can be fully exploited to improve the temporal link prediction performance. Concretely, we first utilize GCN to explore the local topological characteristics of each single snapshot and then employ LSTM to characterize the evolving features of the dynamic networks. Moreover, GAN is used to enhance the ability of the model to generate the next weighted network snapshot, which can effectively tackle the sparsity and the wide-value-range problem of edge weights in real-life dynamic networks. To verify the model's effectiveness, we conduct extensive experiments on four datasets of different network systems and application scenarios. The experimental results demonstrate that our model achieves impressive results compared to the state-of-the-art competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘洋发布了新的文献求助10
刚刚
SCI硬通货完成签到 ,获得积分10
刚刚
上官若男应助淡然紫寒采纳,获得10
1秒前
1秒前
1秒前
Dreamsli完成签到,获得积分10
2秒前
虚幻青曼完成签到,获得积分10
2秒前
TTT完成签到,获得积分10
3秒前
waomi完成签到 ,获得积分10
4秒前
于丽萍发布了新的文献求助10
4秒前
阿湫发布了新的文献求助10
6秒前
Ava应助可靠的又亦采纳,获得10
8秒前
1111111发布了新的文献求助10
8秒前
9秒前
今后应助飞翔的企鹅采纳,获得10
13秒前
真水无香发布了新的文献求助10
14秒前
脑洞疼应助马库拉格采纳,获得10
14秒前
顾矜应助lele采纳,获得10
14秒前
14秒前
科研公主完成签到,获得积分10
18秒前
19秒前
时生完成签到 ,获得积分10
20秒前
我是老大应助愉快又莲采纳,获得10
21秒前
可爱的函函应助平淡博采纳,获得10
21秒前
23秒前
浮游应助彪壮的绮烟采纳,获得10
24秒前
在水一方应助ztt采纳,获得10
24秒前
24秒前
24秒前
浮游应助花开城北采纳,获得10
25秒前
28秒前
butterfly发布了新的文献求助10
28秒前
马库拉格发布了新的文献求助10
28秒前
29秒前
娜na完成签到,获得积分10
31秒前
32秒前
33秒前
34秒前
李健应助冯前浪采纳,获得10
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408