分子质量
化学
生物化学
酶
热稳定性
亲和层析
谷胱甘肽
酶动力学
色谱法
分子生物学
生物
活动站点
作者
Su-fang Kuang,Yuan Yuan,Zhonghao Wu,Ren Peng
标识
DOI:10.1016/j.pep.2019.06.001
摘要
Diguanylate cyclases (DGCs) were responsible for the synthesis of second messenger cyclic di-guanosine monophosphate (c-di-GMP), which were involved in various physiological activities of bacterial species. Here, a full-length DGC from Rhodococcus ruber SD3 fused with glutathione-S-transferase (GST) was expressed in E. coli and purified by glutathione agarose resin. The apparent molecular mass of one subunit of the purified diguanylate cyclase with GST tag (GST-DGC) was estimated to be 71.9 kDa by SDS-PAGE, which was approximately in accordance with the theoretical value of 73.0 kDa. The sequence of GST-DGC was confirmed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The blue native PAGE indicated that GST-DGC formed octamer. The optimum pH and temperature for GST-DGC activity were 8.0 and 47 °C, respectively. The fusion protein exhibited high thermostability, and 94% of activity was retained when the protein was incubated at 87 °C for 1 h. Moreover, the fusion protein showed pH stability. The Km, Vmax and Kcat values for GST-DGC enzyme were 9.8 μM, 0.7 μM/min and 1.3 S-1. Some ions such as Zn2+, Mn2+, Fe2+, Ni2+ and Co2+ had inhibitory effects on the activity of the protein, while other ions such as Mg2+, K+ and Na+ slightly activated the protein. The fusion protein also showed rather high stability in the presence of toluene, cyclohexane and n-hexane.
科研通智能强力驱动
Strongly Powered by AbleSci AI