脂质体
普萘洛尔
药理学
体内
化学
血管瘤
药物输送
碱性成纤维细胞生长因子
PLGA公司
癌症研究
生长因子
体外
医学
病理
生物化学
内科学
受体
生物
生物技术
有机化学
作者
Xiaonan Guo,Chao Dong,Qiuyu Liu,Xun Zhu,Song Zuo,Hongyu Zhang
标识
DOI:10.1016/j.biopha.2019.108823
摘要
We previously developed propranolol-encapsulated liposomes-in-microspheres (PLIM) to realize the sustained propranolol release for the treatment of hemangiomas. However, the liposomes released from the microspheres still lacked specificity for CD133-positive hemangioma-derived stem cells (HemSCs) which are considered to be the seeds of hemangiomas. Therefore, we hereby encapsulated propranolol-loaded CD133 aptamers conjugated liposomes in poly(lactic-co-glycolic acid (PLGA) microspheres to develop propranolol-loaded CD133 aptamers conjugated liposomes-in-microspheres (PCLIM), to realize the aim of the sustained and targeted therapy of hemangiomas. The evaluation of the release of propranolol from PCLIM was carried out, and the cytotoxic effect and angiogenic growth factor expression inhibitory ability of PCLIM were performed in HemSCs. The in vivo hemangioma inhibitory ability of PCLIM was also investigated in nude mice with subcutaneous human hemangiomas. PCLIM possessed a desired size of 29.2 μm, drug encapsulation efficiency (25.3%), and a prolonged drug release for 40 days. Importantly, PCLIM could inhibit HemSCs proliferation and the protein expression of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor-A (VEGF) in HemSCs to a greater extent compared with PLIM. In nude mice bearing hemangioma xenograft, PCLIM showed the best therapeutic efficacy towards hemangiomas, as reflected by remarkably decreased hemangioma volume, weight and microvessel density (MVD). Thus, our results demonstrated that PCLIM realized the sustained and targeted treatment of hemangiomas, resulting in remarkable inhibition of hemangiomas.
科研通智能强力驱动
Strongly Powered by AbleSci AI