Preliminary utilization of radiomics in differentiating uterine sarcoma from atypical leiomyoma: Comparison on diagnostic efficacy of MRI features and radiomic features

医学 平滑肌瘤 无线电技术 放射科 肉瘤 诊断准确性 子宫肌瘤 磁共振成像 病理
作者
Huihui Xie,Juan Hu,Xiaodong Zhang,Shuai Ma,Yi Liu,Xiaoying Wang
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:115: 39-45 被引量:35
标识
DOI:10.1016/j.ejrad.2019.04.004
摘要

To explore whether MRI and radiomic features can differentiate uterine sarcoma from atypical leiomyoma. And to compare diagnostic performance of radiomic model with radiologists.78 patients (29 sarcomas, 49 leiomyomas) imaged with pelvic MRI prior to surgery were included in this retrospective study. Certain clinical and MRI features were evaluated for one lesion per patient. Radiological diagnosis was made based on MRI features. A radiomic model using automated texture analysis based on ADC maps was built to predict pathological results. The association between MRI features and pathological results was determined by multivariable logistic regression after controlling for other variables in univariate analyses with P < 0.05. The diagnostic efficacy of radiologists and radiomic model were compared by area under the receiver-operating characteristic curve (AUC), sensitivity, specificity and accuracy.In univariate analyses, patient's age, menopausal state, intratumor hemorrhage, tumor margin and uterine endometrial cavity were associated with pathological results, P < 0.05. Patient's age, tumor margin and uterine endometrial cavity remained significant in a multivariable model, P < 0.05. Diagnosis efficacy of radiologists based on MRI reached an AUC of 0.752, sensitivity of 58.6%, specificity of 91.8%, and accuracy of 79.5%. The optimal radiomic model reached an AUC of 0.830, sensitivity of 76.0%, average specificity of 73.2%, and accuracy of 73.9%.Ill-defined tumor margin and interrupted uterine endometrial cavity of older women were predictors of uterine sarcoma. Radiomic analysis was feasible. Optimal radiomic model showed comparable diagnostic efficacy with experienced radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佰斯特威发布了新的文献求助30
刚刚
Dawn发布了新的文献求助10
刚刚
刚刚
认真的可冥完成签到,获得积分10
1秒前
1秒前
2秒前
silong发布了新的文献求助10
2秒前
HITvagary完成签到,获得积分10
2秒前
华仔应助欣喜访旋采纳,获得10
2秒前
2秒前
3秒前
良辰应助科研cc采纳,获得10
3秒前
NN应助西门晴采纳,获得10
3秒前
瘦瘦白昼发布了新的文献求助10
3秒前
1111应助科研小民工采纳,获得20
4秒前
逸风望完成签到,获得积分10
4秒前
4秒前
5秒前
慕青应助开朗的慕儿采纳,获得10
5秒前
5秒前
YAOYAO完成签到,获得积分0
5秒前
紫色系完成签到,获得积分10
5秒前
黄豆芽发布了新的文献求助10
6秒前
6秒前
Jin完成签到,获得积分10
7秒前
Akim应助外向如冬采纳,获得10
8秒前
8秒前
8秒前
浩浩大人完成签到,获得积分20
10秒前
10秒前
狂野的雅绿完成签到 ,获得积分10
10秒前
WMT完成签到 ,获得积分10
10秒前
正在输入中完成签到,获得积分10
10秒前
Lucas应助小小学术人采纳,获得10
11秒前
阳光刺眼完成签到 ,获得积分10
11秒前
Akim应助Promise采纳,获得10
11秒前
斯文败类应助小汪采纳,获得10
11秒前
11秒前
小宇发布了新的文献求助10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672