Automatic Pixel‐Level Crack Detection and Measurement Using Fully Convolutional Network

分割 计算机科学 像素 人工智能 鉴定(生物学) 基本事实 模式识别(心理学) 植物 生物
作者
Xincong Yang,Heng Li,Yantao Yu,Xiaochun Luo,Ting Huang,Yang Xu
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:33 (12): 1090-1109 被引量:600
标识
DOI:10.1111/mice.12412
摘要

Abstract The spatial characteristics of cracks are significant indicators to assess and evaluate the health of existing buildings and infrastructures. However, the current manual crack description method is time consuming and labor consuming. To improve the efficiency of crack inspection, advanced computer vision‐based techniques have been utilized to detect cracks automatically at image level and grid‐cell level. But existing crack detections are of (high specificity) low generality and inefficient, in terms that conventional approaches are unable to identify and measure diverse cracks concurrently at pixel level. Therefore, this research implements a novel deep learning technique named fully convolutional network (FCN) to address this problem. First, FCN is trained by feeding multiple types of cracks to semantically identify and segment pixel‐wise cracks at different scales. Then, the predicted crack segmentations are represented by single‐pixel width skeletons to quantitatively measure the morphological features of cracks, providing valuable crack indicators for assessment in practice, such as crack topology, crack length, max width, and mean width. To validate the prediction, the predicted segmentations are compared with recent advanced method for crack recognition and ground truth. For crack segmentation, the accuracy, precision, recall, and F1 score are 97.96%, 81.73%, 78.97%, and 79.95%, respectively. For crack length, the relative measurement error varies from −48.03% to 177.79%, meanwhile that ranges from −13.27% to 24.01% for crack width. The results show that FCN is feasible and sufficient for crack identification and measurement. Although the accuracy is not as high as CrackNet because of three types of errors, the prediction has been increased to pixel level and the training time has been dramatically decreased to several per cents of previous methods due to the novel end‐to‐end structure of FCN, which combines typical convolutional neural networks and deconvolutional layers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
江蓠虽晚完成签到 ,获得积分10
1秒前
2秒前
静静优柔完成签到,获得积分10
4秒前
5秒前
东郭寄灵发布了新的文献求助10
5秒前
sun完成签到,获得积分10
6秒前
blingl发布了新的文献求助10
7秒前
一叹山青发布了新的文献求助30
7秒前
科研通AI5应助小小雨天采纳,获得10
8秒前
猪猪hero应助活泼的破茧采纳,获得10
10秒前
科研通AI5应助诸葛凤雏采纳,获得30
10秒前
风枞完成签到 ,获得积分10
11秒前
ding应助zhouleiwang采纳,获得10
11秒前
笑林发布了新的文献求助10
11秒前
害羞听芹完成签到,获得积分10
12秒前
sun发布了新的文献求助10
12秒前
zzx发布了新的文献求助10
13秒前
汉堡包应助东郭寄灵采纳,获得10
13秒前
13秒前
CodeCraft应助热心玉兰采纳,获得10
13秒前
14秒前
14秒前
kk发布了新的文献求助10
18秒前
18秒前
资白玉发布了新的文献求助10
19秒前
VvV完成签到,获得积分10
21秒前
21秒前
卡皮巴拉完成签到 ,获得积分10
23秒前
科研通AI5应助阳光明明采纳,获得10
26秒前
噜噜发布了新的文献求助10
26秒前
烟花应助玖月采纳,获得10
27秒前
27秒前
蜜CC完成签到,获得积分20
27秒前
dungaway完成签到,获得积分10
27秒前
一叹山青完成签到,获得积分10
28秒前
顾矜应助黎li采纳,获得10
29秒前
王梓霏完成签到,获得积分10
30秒前
hebrews完成签到,获得积分10
31秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738850
求助须知:如何正确求助?哪些是违规求助? 3282273
关于积分的说明 10028265
捐赠科研通 2998982
什么是DOI,文献DOI怎么找? 1645682
邀请新用户注册赠送积分活动 782882
科研通“疑难数据库(出版商)”最低求助积分说明 750067