The Development of Fuzzy Rough Sets with the Use of Structures and Algebras of Axiomatic Fuzzy Sets

粗集 数学 模糊集 2型模糊集与系统 模糊逻辑 模糊分类 模糊集运算 模糊数 去模糊化 公理系统 基于优势度的粗糙集方法 数据挖掘 算法 计算机科学 域代数上的 人工智能 离散数学 公理 纯数学 几何学
作者
Xiaodong Liu,Witold Pedrycz,Tianyou Chai,Mingli Song
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (3): 443-462 被引量:57
标识
DOI:10.1109/tkde.2008.147
摘要

The notion of a rough set was originally proposed by Pawlak underwent a number of extensions and generalizations. Dubois and Prade (1990) introduced fuzzy rough sets which involve the use of rough sets and fuzzy sets within a single framework. Radzikowska and Kerre (2002) proposed a broad family of fuzzy rough sets, referred to as ( t)-fuzzy rough sets which are determined by some implication operator (implicator), and a certain t-norm. In order to describe the linguistically represented concepts coming from data available in some information system, the concept of fuzzy rough sets are redefined and further studied in the setting of the Axiomatic Fuzzy Set (AFS) theory. Compared with the ( t)-fuzzy rough sets, the advantages of AFS fuzzy rough sets are twofold. They can be directly applied to data analysis present in any information system without resorting to the details concerning the choice of the implication, t-norm and a similarity relation S. Furthermore such rough approximations of fuzzy concepts come with a well-defined semantics and therefore offer a sound interpretation. Some examples are included to illustrate the effectiveness of the proposed construct. It is shown that the AFS fuzzy rough sets provide a far higher flexibility and effectiveness in comparison with rough sets and some of their generalizations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiang完成签到,获得积分10
刚刚
虚幻的青槐完成签到,获得积分20
1秒前
1秒前
CWNU_HAN应助芥丶子采纳,获得30
1秒前
3秒前
4秒前
4秒前
摸鱼大使发布了新的文献求助10
4秒前
桃花换小鱼干55完成签到 ,获得积分10
6秒前
马贝贝发布了新的文献求助10
7秒前
hxs606完成签到,获得积分10
7秒前
甜甜映菡发布了新的文献求助10
8秒前
煜琪发布了新的文献求助10
8秒前
愤怒的心锁关注了科研通微信公众号
8秒前
小鱼完成签到,获得积分10
9秒前
9秒前
wanci应助漂亮的秋天采纳,获得10
10秒前
11112222完成签到,获得积分20
11秒前
小姜发布了新的文献求助10
11秒前
友好绿柏发布了新的文献求助10
12秒前
科目三应助Vek采纳,获得10
13秒前
勿欲论比完成签到,获得积分10
14秒前
15秒前
英姑应助lzb2228采纳,获得10
15秒前
jiesenya完成签到,获得积分10
16秒前
衰神完成签到,获得积分10
17秒前
QIQI完成签到,获得积分10
18秒前
syk应助lxptsd采纳,获得10
19秒前
笑点低依云完成签到,获得积分10
19秒前
草花丝带应助hanyang965采纳,获得10
19秒前
20秒前
21秒前
22秒前
梓墨发布了新的文献求助10
22秒前
bkagyin应助友好绿柏采纳,获得10
24秒前
puzhongjiMiQ发布了新的文献求助10
25秒前
26秒前
MartinSEU发布了新的文献求助30
27秒前
27秒前
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310502
求助须知:如何正确求助?哪些是违规求助? 2943362
关于积分的说明 8514240
捐赠科研通 2618611
什么是DOI,文献DOI怎么找? 1431244
科研通“疑难数据库(出版商)”最低求助积分说明 664398
邀请新用户注册赠送积分活动 649616