The Interdependence of Exposure and Development Conditions when Optimizing Low-Energy EBL for Nano-Scale Resolution

抵抗 光刻胶 电子束光刻 材料科学 平版印刷术 纳米技术 倍半硅氧烷氢 纳米尺度 制作 散射 光电子学 阴极射线 电子 光学 图层(电子) 物理 病理 替代医学 医学 量子力学
作者
Abu Bakar Mohammad,Taras Fito,Jiang Chen,Steven Buswell,Mirwais Aktary,Kevin Steven,Maria Stepanov
出处
期刊:InTech eBooks [InTech]
被引量:8
标识
DOI:10.5772/8182
摘要

Electron beam lithography (EBL) is the major direct-write technique to controllably fabricate nanoscale features. A focused beam of electrons induces a chemical change in a layer of radiation sensitive material (resist), such as chain scissioning in positive tone polymethylmethacrylate (PMMA) polymer photoresist. The localized fragmented region is rendered more soluble in a suitable developer solution and removed. In negative tone resists, such as hydrogen silsesquioxane (HSQ) or calixarene, the radiation damage eventually results in bond cross-linking, generating structures locally more resistant to dissolution. Limitations of the technology are related largely with unwanted exposure of the resist away from the impact of the focused electron beam due to scattering of the primary electrons in the resist (often described as the forward scattering), generation of secondary electrons, and backscattering from the substrate (the proximity effect). The exposure and development processes have been optimized and routinely used for fabrication of submicron features. However, as requirements for lithography have progressed toward the sub-20 nm regimes, major challenges have emerged of introducing controllable radiationinduced changes at molecular-size scales, within a reasonable tradeoff with the applicability of the standard materials, as well as cost and simplicity of the processes. Due to the proximity effect, this becomes particularly demanding when dense patterns with closely positioned features must be fabricated. Achieving deep nanoscale resolutions in high density patterns at industrially-relevant throughputs requires new approaches to EBL. Novel EBL processes that would extend capabilities of the technology significantly into the deep nanoscale regime entail new approaches to resist design, exposure strategies, and development techniques (Haffner et al., 2007; Liddle et al., 2003; Ocola & Stein, 2007; Word et al., 2003). To achieve this will require a much more detailed understanding of the molecular mechanisms involved in both the electron-resist interaction and in the polymer dissolution (development) stages of the nanolithography process. Despite a significant research effort and vast literature on electron beam lithography, the detailed molecular mechanisms are still inadequately understood. Published modeling studies address
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
沉静的万天完成签到 ,获得积分10
1秒前
cdercder应助张志伟采纳,获得10
1秒前
漂亮的人生完成签到,获得积分10
2秒前
2秒前
秋刀鱼完成签到,获得积分10
2秒前
完美世界应助张先森采纳,获得10
4秒前
丘比特应助anny2022采纳,获得10
4秒前
善学以致用应助多多采纳,获得10
5秒前
哈哈哈发布了新的文献求助10
5秒前
5秒前
横冲直撞完成签到,获得积分10
6秒前
彦祖完成签到,获得积分10
6秒前
1TWE完成签到 ,获得积分10
7秒前
默默的阑悦完成签到,获得积分20
7秒前
astral完成签到,获得积分10
7秒前
8秒前
8秒前
阿废完成签到,获得积分10
8秒前
奇犽请爱我应助资白玉采纳,获得10
8秒前
bobo发布了新的文献求助10
8秒前
汉堡包应助superneo采纳,获得10
8秒前
huahua完成签到 ,获得积分10
9秒前
思源应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
时尚的闭月完成签到,获得积分10
9秒前
实验好难应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
nozero应助科研通管家采纳,获得30
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
呵呵呵呵应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得30
9秒前
烟花应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733775
求助须知:如何正确求助?哪些是违规求助? 3278009
关于积分的说明 10006192
捐赠科研通 2994159
什么是DOI,文献DOI怎么找? 1642937
邀请新用户注册赠送积分活动 780727
科研通“疑难数据库(出版商)”最低求助积分说明 748987