DeepSmoke: Deep learning model for smoke detection and segmentation in outdoor environments

计算机科学 分割 烟雾 人工智能 卷积神经网络 火灾探测 深度学习 假警报 模式识别(心理学) 图像分割 目标检测 机器学习 物理 气象学 热力学
作者
Salman Khan,Khan Muhammad,Tanveer Hussain,Javier Del Ser,Fabio Cuzzolin,Siddhartha Bhattacharyya,Zahid Akhtar,Victor Hugo C. de Albuquerque
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:182: 115125-115125 被引量:82
标识
DOI:10.1016/j.eswa.2021.115125
摘要

Fire disaster throughout the globe causes social, environmental, and economical damage, making its early detection and instant reporting essential for saving human lives and properties. Smoke detection plays a key role in early fire detection but majority of the existing methods are limited to either indoor or outdoor surveillance environments, with poor performance for hazy scenarios. In this paper, we present a Convolutional Neural Network (CNN)-based smoke detection and segmentation framework for both clear and hazy environments. Unlike existing methods, we employ an efficient CNN architecture, termed EfficientNet, for smoke detection with better accuracy. We also segment the smoke regions using DeepLabv3+, which is supported by effective encoders and decoders along with a pixel-wise classifier for optimum localization. Our smoke detection results evince a noticeable gain up to 3% in accuracy and a decrease of 0.46% in False Alarm Rate (FAR), while segmentation reports a significant increase of 2% and 1% in global accuracy and mean Intersection over Union (IoU) scores, respectively. This makes our method a best fit for smoke detection and segmentation in real-world surveillance settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xueer发布了新的文献求助10
3秒前
4秒前
myheng完成签到 ,获得积分10
5秒前
李嘉发布了新的文献求助10
5秒前
5秒前
5秒前
田様应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
萧水白应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
知许解夏应助科研通管家采纳,获得10
6秒前
6秒前
ED应助科研通管家采纳,获得10
6秒前
May应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
6秒前
李健应助科研通管家采纳,获得30
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
关琦完成签到,获得积分10
6秒前
chengzhiliu29完成签到,获得积分20
7秒前
耍酷背包发布了新的文献求助30
8秒前
充电宝应助鲜艳的皮皮虾采纳,获得10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966399
求助须知:如何正确求助?哪些是违规求助? 3511837
关于积分的说明 11160190
捐赠科研通 3246481
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388