Analysis of Travel Mode Choice in Seoul Using an Interpretable Machine Learning Approach

模式选择 可解释性 旅游行为 多项式logistic回归 变量(数学) 模式(计算机接口) 关系(数据库) 计算机科学 计量经济学 变量 旅游调查 罗伊特 梯度升压 逻辑回归 人工智能 机器学习 数学 随机森林 公共交通 工程类 数据挖掘 运输工程 数学分析 操作系统
作者
Eui-Jin Kim
出处
期刊:Journal of Advanced Transportation [Hindawi Limited]
卷期号:2021: 1-13 被引量:50
标识
DOI:10.1155/2021/6685004
摘要

Understanding choice behavior regarding travel mode is essential in forecasting travel demand. Machine learning (ML) approaches have been proposed to model mode choice behavior, and their usefulness for predicting performance has been reported. However, due to the black-box nature of ML, it is difficult to determine a suitable explanation for the relationship between the input and output variables. This paper proposes an interpretable ML approach to improve the interpretability (i.e., the degree of understanding the cause of decisions) of ML concerning travel mode choice modeling. This approach applied to national household travel survey data in Seoul. First, extreme gradient boosting (XGB) was applied to travel mode choice modeling, and the XGB outperformed the other ML models. Variable importance, variable interaction, and accumulated local effects (ALE) were measured to interpret the prediction of the best-performing XGB. The results of variable importance and interaction indicated that the correlated trip- and tour-related variables significantly influence predicting travel mode choice by the main and cross effects between them. Age and number of trips on tour were also shown to be an important variable in choosing travel mode. ALE measured the main effect of variables that have a nonlinear relation to choice probability, which cannot be observed in the conventional multinomial logit model. This information can provide interesting behavioral insights on urban mobility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hillson完成签到,获得积分10
1秒前
2秒前
调皮傲旋发布了新的文献求助10
2秒前
2秒前
英姑应助喵哥233采纳,获得10
3秒前
fantw完成签到,获得积分10
4秒前
天天快乐应助小小采纳,获得10
4秒前
123456完成签到,获得积分10
4秒前
6秒前
brh发布了新的文献求助10
7秒前
华仔应助科研通管家采纳,获得10
8秒前
1111应助科研通管家采纳,获得10
8秒前
杳鸢应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
shi hui应助科研通管家采纳,获得10
8秒前
杳鸢应助科研通管家采纳,获得10
8秒前
林小美发布了新的文献求助10
8秒前
圆圆完成签到,获得积分20
9秒前
杳鸢应助科研通管家采纳,获得10
9秒前
杳鸢应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
wxd应助科研通管家采纳,获得20
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
9秒前
小夏1855完成签到,获得积分10
9秒前
小太阳完成签到,获得积分10
9秒前
木木发布了新的文献求助10
10秒前
10秒前
雨也箫潇完成签到,获得积分10
11秒前
vvcutest完成签到,获得积分10
11秒前
笑笑丶不爱笑完成签到,获得积分10
11秒前
华仔应助社会你董哥采纳,获得10
12秒前
不加糖完成签到,获得积分10
12秒前
科研通AI5应助张凤采纳,获得10
13秒前
迟大猫应助无私的绿蕊采纳,获得10
14秒前
半醉哥完成签到,获得积分10
14秒前
天天快乐应助二十采纳,获得10
17秒前
宇宙之王宙斯完成签到 ,获得积分10
17秒前
打打应助Anquan采纳,获得30
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3579656
求助须知:如何正确求助?哪些是违规求助? 3149638
关于积分的说明 9477852
捐赠科研通 2850806
什么是DOI,文献DOI怎么找? 1567398
邀请新用户注册赠送积分活动 734051
科研通“疑难数据库(出版商)”最低求助积分说明 720398