Using machine learning to predict paediatric 30-day unplanned hospital readmissions: a case-control retrospective analysis of medical records, including written discharge documentation

文档 医学 逻辑回归 病历 审计 回顾性队列研究 统计的 急诊医学 医疗急救 统计 外科 计算机科学 会计 内科学 业务 数学 程序设计语言
作者
Huaqiong Zhou,Matthew A. Albrecht,Pamela D. Roberts,Paul M. Porter,Philip R. Della
出处
期刊:Australian Health Review [CSIRO Publishing]
卷期号:45 (3): 328-337 被引量:4
标识
DOI:10.1071/ah20062
摘要

Objectives To assess whether adding clinical information and written discharge documentation variables improves prediction of paediatric 30-day same-hospital unplanned readmission compared with predictions based on administrative information alone. Methods A retrospective matched case-control study audited the medical records of patients discharged from a tertiary paediatric hospital in Western Australia (WA) between January 2010 and December 2014. A random selection of 470 patients with unplanned readmissions (out of 3330) were matched to 470 patients without readmissions based on age, sex, and principal diagnosis at the index admission. Prediction utility of three groups of variables (administrative, administrative and clinical, and administrative, clinical and written discharge documentation) were assessed using standard logistic regression and machine learning. Results Inclusion of written discharge documentation variables significantly improved prediction of readmission compared with models that used only administrative and/or clinical variables in standard logistic regression analysis (χ2 17 = 29.4, P = 0.03). Highest prediction accuracy was obtained using a gradient boosted tree model (C-statistic = 0.654), followed closely by random forest and elastic net modelling approaches. Variables highlighted as important for prediction included patients’ social history (legal custody or patient was under the care of the Department for Child Protection), languages spoken other than English, completeness of nursing admission and discharge planning documentation, and timing of issuing discharge summary. Conclusions The variables of significant social history, low English language proficiency, incomplete discharge documentation, and delay in issuing the discharge summary add value to prediction models. What is known about the topic? Despite written discharge documentation playing a critical role in the continuity of care for paediatric patients, limited research has examined its association with, and ability to predict, unplanned hospital readmissions. Machine learning approaches have been applied to various health conditions and demonstrated improved predictive accuracy. However, few published studies have used machine learning to predict paediatric readmissions. What does this paper add? This paper presents the findings of the first known study in Australia to assess and report that written discharge documentation and clinical information improves unplanned rehospitalisation prediction accuracy in a paediatric cohort compared with administrative data alone. It is also the first known published study to use machine learning for the prediction of paediatric same-hospital unplanned readmission in Australia. The results show improved predictive performance of the machine learning approach compared with standard logistic regression. What are the implications for practitioners? The identified social and written discharge documentation predictors could be translated into clinical practice through improved discharge planning and processes, to prevent paediatric 30-day all-cause same-hospital unplanned readmission. The predictors identified in this study include significant social history, low English language proficiency, incomplete discharge documentation, and delay in issuing the discharge summary.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助XIAOJU_U采纳,获得10
刚刚
1秒前
拈花一笑发布了新的文献求助10
1秒前
pp发布了新的文献求助10
2秒前
科研通AI2S应助科研混子采纳,获得10
2秒前
友好的储发布了新的文献求助10
3秒前
体贴的雁菱完成签到,获得积分10
3秒前
3秒前
十香鱼完成签到,获得积分10
3秒前
5秒前
JiangY完成签到,获得积分10
5秒前
orixero应助Cris采纳,获得10
5秒前
完美世界应助fleee采纳,获得10
5秒前
文思泉涌完成签到,获得积分10
5秒前
飞机发布了新的文献求助10
6秒前
6秒前
梵高晚风完成签到,获得积分10
6秒前
希望天下0贩的0应助hailan采纳,获得10
6秒前
充电宝应助开心保温杯采纳,获得10
7秒前
bin完成签到,获得积分10
8秒前
黑土完成签到,获得积分20
8秒前
颖火虫完成签到,获得积分10
8秒前
JiangY发布了新的文献求助10
8秒前
科研通AI5应助shi hui采纳,获得10
9秒前
9秒前
9秒前
9秒前
搜集达人应助小k采纳,获得10
10秒前
10秒前
11秒前
Cynthia发布了新的文献求助10
11秒前
隐形曼青应助teadan采纳,获得10
11秒前
瑞水南郡完成签到,获得积分10
12秒前
溪鱼发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
直率云朵发布了新的文献求助10
13秒前
新人类完成签到,获得积分10
14秒前
fduqyy发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193007
求助须知:如何正确求助?哪些是违规求助? 4375799
关于积分的说明 13626640
捐赠科研通 4230400
什么是DOI,文献DOI怎么找? 2320393
邀请新用户注册赠送积分活动 1318798
关于科研通互助平台的介绍 1269105