Using machine learning to predict paediatric 30-day unplanned hospital readmissions: a case-control retrospective analysis of medical records, including written discharge documentation

文档 医学 逻辑回归 病历 审计 回顾性队列研究 统计的 急诊医学 医疗急救 统计 外科 计算机科学 会计 内科学 业务 数学 程序设计语言
作者
Huaqiong Zhou,Matthew A. Albrecht,Pamela D. Roberts,Paul M. Porter,Philip R. Della
出处
期刊:Australian Health Review [CSIRO Publishing]
卷期号:45 (3): 328-337 被引量:4
标识
DOI:10.1071/ah20062
摘要

Objectives To assess whether adding clinical information and written discharge documentation variables improves prediction of paediatric 30-day same-hospital unplanned readmission compared with predictions based on administrative information alone. Methods A retrospective matched case-control study audited the medical records of patients discharged from a tertiary paediatric hospital in Western Australia (WA) between January 2010 and December 2014. A random selection of 470 patients with unplanned readmissions (out of 3330) were matched to 470 patients without readmissions based on age, sex, and principal diagnosis at the index admission. Prediction utility of three groups of variables (administrative, administrative and clinical, and administrative, clinical and written discharge documentation) were assessed using standard logistic regression and machine learning. Results Inclusion of written discharge documentation variables significantly improved prediction of readmission compared with models that used only administrative and/or clinical variables in standard logistic regression analysis (χ2 17 = 29.4, P = 0.03). Highest prediction accuracy was obtained using a gradient boosted tree model (C-statistic = 0.654), followed closely by random forest and elastic net modelling approaches. Variables highlighted as important for prediction included patients’ social history (legal custody or patient was under the care of the Department for Child Protection), languages spoken other than English, completeness of nursing admission and discharge planning documentation, and timing of issuing discharge summary. Conclusions The variables of significant social history, low English language proficiency, incomplete discharge documentation, and delay in issuing the discharge summary add value to prediction models. What is known about the topic? Despite written discharge documentation playing a critical role in the continuity of care for paediatric patients, limited research has examined its association with, and ability to predict, unplanned hospital readmissions. Machine learning approaches have been applied to various health conditions and demonstrated improved predictive accuracy. However, few published studies have used machine learning to predict paediatric readmissions. What does this paper add? This paper presents the findings of the first known study in Australia to assess and report that written discharge documentation and clinical information improves unplanned rehospitalisation prediction accuracy in a paediatric cohort compared with administrative data alone. It is also the first known published study to use machine learning for the prediction of paediatric same-hospital unplanned readmission in Australia. The results show improved predictive performance of the machine learning approach compared with standard logistic regression. What are the implications for practitioners? The identified social and written discharge documentation predictors could be translated into clinical practice through improved discharge planning and processes, to prevent paediatric 30-day all-cause same-hospital unplanned readmission. The predictors identified in this study include significant social history, low English language proficiency, incomplete discharge documentation, and delay in issuing the discharge summary.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣慰妙海完成签到 ,获得积分20
刚刚
CodeCraft应助zhaopeipei采纳,获得10
刚刚
LIUYONG发布了新的文献求助10
1秒前
lin发布了新的文献求助10
3秒前
4秒前
九湖夷上完成签到 ,获得积分10
4秒前
噼里啪啦完成签到 ,获得积分10
5秒前
大个应助hahaha123213123采纳,获得30
5秒前
5秒前
惊天大幂幂完成签到,获得积分10
5秒前
英姑应助Fang Xianxin采纳,获得10
6秒前
宋老师发布了新的文献求助30
6秒前
王洋完成签到,获得积分10
7秒前
lw777完成签到,获得积分20
7秒前
慢慢完成签到,获得积分10
7秒前
8秒前
靖123456发布了新的文献求助10
8秒前
拓跋箴完成签到,获得积分10
8秒前
彭于晏应助zy采纳,获得10
9秒前
精明玲完成签到 ,获得积分10
10秒前
10秒前
乐乐完成签到,获得积分10
11秒前
VirSnorlax完成签到,获得积分10
11秒前
SciGPT应助LL采纳,获得10
11秒前
妖孽宇发布了新的文献求助10
12秒前
aa完成签到,获得积分20
12秒前
aaaa完成签到,获得积分10
12秒前
马香芦完成签到,获得积分10
13秒前
西红柿完成签到,获得积分10
14秒前
15秒前
懵懂的冬灵完成签到,获得积分10
15秒前
碧蓝可仁完成签到 ,获得积分10
16秒前
王拉拉完成签到 ,获得积分10
16秒前
西西完成签到,获得积分10
16秒前
深情安青应助mkmimii采纳,获得10
17秒前
上官若男应助小王采纳,获得10
17秒前
bkagyin应助旦皋采纳,获得10
17秒前
Orange应助欣欣采纳,获得10
18秒前
玄学大哥完成签到,获得积分10
18秒前
18秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029