已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using machine learning to predict paediatric 30-day unplanned hospital readmissions: a case-control retrospective analysis of medical records, including written discharge documentation

文档 医学 逻辑回归 病历 审计 回顾性队列研究 统计的 急诊医学 医疗急救 统计 外科 计算机科学 会计 内科学 业务 数学 程序设计语言
作者
Huaqiong Zhou,Matthew A. Albrecht,Pamela D. Roberts,Paul M. Porter,Philip R. Della
出处
期刊:Australian Health Review [CSIRO Publishing]
卷期号:45 (3): 328-337 被引量:4
标识
DOI:10.1071/ah20062
摘要

Objectives To assess whether adding clinical information and written discharge documentation variables improves prediction of paediatric 30-day same-hospital unplanned readmission compared with predictions based on administrative information alone. Methods A retrospective matched case-control study audited the medical records of patients discharged from a tertiary paediatric hospital in Western Australia (WA) between January 2010 and December 2014. A random selection of 470 patients with unplanned readmissions (out of 3330) were matched to 470 patients without readmissions based on age, sex, and principal diagnosis at the index admission. Prediction utility of three groups of variables (administrative, administrative and clinical, and administrative, clinical and written discharge documentation) were assessed using standard logistic regression and machine learning. Results Inclusion of written discharge documentation variables significantly improved prediction of readmission compared with models that used only administrative and/or clinical variables in standard logistic regression analysis (χ2 17 = 29.4, P = 0.03). Highest prediction accuracy was obtained using a gradient boosted tree model (C-statistic = 0.654), followed closely by random forest and elastic net modelling approaches. Variables highlighted as important for prediction included patients’ social history (legal custody or patient was under the care of the Department for Child Protection), languages spoken other than English, completeness of nursing admission and discharge planning documentation, and timing of issuing discharge summary. Conclusions The variables of significant social history, low English language proficiency, incomplete discharge documentation, and delay in issuing the discharge summary add value to prediction models. What is known about the topic? Despite written discharge documentation playing a critical role in the continuity of care for paediatric patients, limited research has examined its association with, and ability to predict, unplanned hospital readmissions. Machine learning approaches have been applied to various health conditions and demonstrated improved predictive accuracy. However, few published studies have used machine learning to predict paediatric readmissions. What does this paper add? This paper presents the findings of the first known study in Australia to assess and report that written discharge documentation and clinical information improves unplanned rehospitalisation prediction accuracy in a paediatric cohort compared with administrative data alone. It is also the first known published study to use machine learning for the prediction of paediatric same-hospital unplanned readmission in Australia. The results show improved predictive performance of the machine learning approach compared with standard logistic regression. What are the implications for practitioners? The identified social and written discharge documentation predictors could be translated into clinical practice through improved discharge planning and processes, to prevent paediatric 30-day all-cause same-hospital unplanned readmission. The predictors identified in this study include significant social history, low English language proficiency, incomplete discharge documentation, and delay in issuing the discharge summary.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寇博翔发布了新的文献求助30
刚刚
传奇3应助益生菌小哥采纳,获得10
刚刚
积极松完成签到 ,获得积分10
1秒前
1秒前
3秒前
xinxin完成签到,获得积分10
5秒前
icecream完成签到,获得积分10
6秒前
6秒前
vicky完成签到,获得积分10
7秒前
mark707发布了新的文献求助50
7秒前
赘婿应助寇博翔采纳,获得10
8秒前
图图医关注了科研通微信公众号
12秒前
hhh完成签到 ,获得积分10
13秒前
15秒前
16秒前
6昂完成签到 ,获得积分10
18秒前
HMX发布了新的文献求助10
23秒前
图图医发布了新的文献求助10
24秒前
24秒前
25秒前
香蕉觅云应助玛卡巴卡采纳,获得10
26秒前
无心客应助玛卡巴卡采纳,获得10
26秒前
情怀应助玛卡巴卡采纳,获得10
26秒前
无心客应助玛卡巴卡采纳,获得10
26秒前
今后应助玛卡巴卡采纳,获得10
26秒前
无心客应助玛卡巴卡采纳,获得10
26秒前
Akim应助玛卡巴卡采纳,获得10
26秒前
酷波er应助玛卡巴卡采纳,获得10
27秒前
思源应助玛卡巴卡采纳,获得10
27秒前
充电宝应助玛卡巴卡采纳,获得10
27秒前
27秒前
健壮的思远完成签到,获得积分10
28秒前
天元神尊完成签到 ,获得积分10
28秒前
充电宝应助ddd采纳,获得10
29秒前
Alimove完成签到,获得积分10
29秒前
29秒前
WU发布了新的文献求助10
31秒前
深情安青应助四月采纳,获得10
32秒前
32秒前
Zoo发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252897
求助须知:如何正确求助?哪些是违规求助? 4416496
关于积分的说明 13749852
捐赠科研通 4288649
什么是DOI,文献DOI怎么找? 2353022
邀请新用户注册赠送积分活动 1349787
关于科研通互助平台的介绍 1309434