Using machine learning to predict paediatric 30-day unplanned hospital readmissions: a case-control retrospective analysis of medical records, including written discharge documentation

文档 医学 逻辑回归 病历 审计 回顾性队列研究 统计的 急诊医学 医疗急救 统计 外科 计算机科学 会计 内科学 数学 业务 程序设计语言
作者
Huaqiong Zhou,Matthew A. Albrecht,Pamela D. Roberts,Paul M. Porter,Philip R. Della
出处
期刊:Australian Health Review [CSIRO Publishing]
卷期号:45 (3): 328-337 被引量:4
标识
DOI:10.1071/ah20062
摘要

Objectives To assess whether adding clinical information and written discharge documentation variables improves prediction of paediatric 30-day same-hospital unplanned readmission compared with predictions based on administrative information alone. Methods A retrospective matched case-control study audited the medical records of patients discharged from a tertiary paediatric hospital in Western Australia (WA) between January 2010 and December 2014. A random selection of 470 patients with unplanned readmissions (out of 3330) were matched to 470 patients without readmissions based on age, sex, and principal diagnosis at the index admission. Prediction utility of three groups of variables (administrative, administrative and clinical, and administrative, clinical and written discharge documentation) were assessed using standard logistic regression and machine learning. Results Inclusion of written discharge documentation variables significantly improved prediction of readmission compared with models that used only administrative and/or clinical variables in standard logistic regression analysis (χ2 17 = 29.4, P = 0.03). Highest prediction accuracy was obtained using a gradient boosted tree model (C-statistic = 0.654), followed closely by random forest and elastic net modelling approaches. Variables highlighted as important for prediction included patients’ social history (legal custody or patient was under the care of the Department for Child Protection), languages spoken other than English, completeness of nursing admission and discharge planning documentation, and timing of issuing discharge summary. Conclusions The variables of significant social history, low English language proficiency, incomplete discharge documentation, and delay in issuing the discharge summary add value to prediction models. What is known about the topic? Despite written discharge documentation playing a critical role in the continuity of care for paediatric patients, limited research has examined its association with, and ability to predict, unplanned hospital readmissions. Machine learning approaches have been applied to various health conditions and demonstrated improved predictive accuracy. However, few published studies have used machine learning to predict paediatric readmissions. What does this paper add? This paper presents the findings of the first known study in Australia to assess and report that written discharge documentation and clinical information improves unplanned rehospitalisation prediction accuracy in a paediatric cohort compared with administrative data alone. It is also the first known published study to use machine learning for the prediction of paediatric same-hospital unplanned readmission in Australia. The results show improved predictive performance of the machine learning approach compared with standard logistic regression. What are the implications for practitioners? The identified social and written discharge documentation predictors could be translated into clinical practice through improved discharge planning and processes, to prevent paediatric 30-day all-cause same-hospital unplanned readmission. The predictors identified in this study include significant social history, low English language proficiency, incomplete discharge documentation, and delay in issuing the discharge summary.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Alice0210发布了新的文献求助10
2秒前
英姑应助胡涵暄采纳,获得10
2秒前
善学以致用应助无非采纳,获得10
3秒前
孤独的太清完成签到 ,获得积分10
3秒前
涵泽发布了新的文献求助10
4秒前
4秒前
Suyx发布了新的文献求助10
4秒前
5秒前
ding应助Antares采纳,获得10
5秒前
田様应助烂漫凝竹采纳,获得10
5秒前
科研通AI6应助cjch2025采纳,获得10
5秒前
未道发布了新的文献求助10
6秒前
星辰大海应助xiaobai采纳,获得10
6秒前
天将明完成签到,获得积分10
6秒前
7秒前
8秒前
科研通AI6应助djbj2022采纳,获得10
8秒前
xiaohuang发布了新的文献求助10
8秒前
vividkingking发布了新的文献求助10
8秒前
NexusExplorer应助吴念采纳,获得10
10秒前
10秒前
KKKZ完成签到,获得积分10
11秒前
大胆傲芙完成签到,获得积分10
12秒前
今后应助高宇晖采纳,获得10
12秒前
凉秋气爽完成签到,获得积分10
13秒前
13秒前
盖亚奇应助ocean采纳,获得20
14秒前
浮游应助天将明采纳,获得10
15秒前
16秒前
16秒前
16秒前
17秒前
9527King发布了新的文献求助10
18秒前
SZY发布了新的文献求助10
18秒前
18秒前
GGGT关注了科研通微信公众号
19秒前
无非发布了新的文献求助10
19秒前
研友_VZG7GZ应助殷勤的秋荷采纳,获得10
19秒前
林小鱼发布了新的文献求助10
20秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342918
求助须知:如何正确求助?哪些是违规求助? 4478608
关于积分的说明 13940254
捐赠科研通 4375531
什么是DOI,文献DOI怎么找? 2404114
邀请新用户注册赠送积分活动 1396625
关于科研通互助平台的介绍 1368965