亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method

计算机科学 数学优化 元启发式 局部最优 趋同(经济学) 隐喻 算法 人工智能 数学 语言学 经济增长 哲学 经济
作者
Iman Ahmadianfar,Ali Asghar Heidari,Amir H. Gandomi,Xuefeng Chu,Huiling Chen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:181: 115079-115079 被引量:899
标识
DOI:10.1016/j.eswa.2021.115079
摘要

The optimization field suffers from the metaphor-based “pseudo-novel” or “fancy” optimizers. Most of these cliché methods mimic animals' searching trends and possess a small contribution to the optimization process itself. Most of these cliché methods suffer from the locally efficient performance, biased verification methods on easy problems, and high similarity between their components' interactions. This study attempts to go beyond the traps of metaphors and introduce a novel metaphor-free population-based optimization method based on the mathematical foundations and ideas of the Runge Kutta (RK) method widely well-known in mathematics. The proposed RUNge Kutta optimizer (RUN) was developed to deal with various types of optimization problems in the future. The RUN utilizes the logic of slope variations computed by the RK method as a promising and logical searching mechanism for global optimization. This search mechanism benefits from two active exploration and exploitation phases for exploring the promising regions in the feature space and constructive movement toward the global best solution. Furthermore, an enhanced solution quality (ESQ) mechanism is employed to avoid the local optimal solutions and increase convergence speed. The RUN algorithm's efficiency was evaluated by comparing with other metaheuristic algorithms in 50 mathematical test functions and four real-world engineering problems. The RUN provided very promising and competitive results, showing superior exploration and exploitation tendencies, fast convergence rate, and local optima avoidance. In optimizing the constrained engineering problems, the metaphor-free RUN demonstrated its suitable performance as well. The authors invite the community for extensive evaluations of this deep-rooted optimizer as a promising tool for real-world optimization. The source codes, supplementary materials, and guidance for the developed method will be publicly available at different hubs at http://imanahmadianfar.com and http://aliasgharheidari.com/RUN.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanzilin完成签到 ,获得积分10
1秒前
猪仔5号发布了新的文献求助10
10秒前
谨慎建辉完成签到,获得积分10
39秒前
猪仔5号发布了新的文献求助10
42秒前
科研通AI2S应助谨慎建辉采纳,获得10
1分钟前
1分钟前
冷静初彤应助科研通管家采纳,获得10
1分钟前
1分钟前
Auralis完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
务实的初蝶完成签到,获得积分10
2分钟前
cc发布了新的文献求助10
2分钟前
科研通AI2S应助cc采纳,获得10
2分钟前
猪仔5号完成签到,获得积分10
2分钟前
2分钟前
中華人民共和完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
猪仔5号发布了新的文献求助10
4分钟前
谷雨发布了新的文献求助10
4分钟前
搜集达人应助谷雨采纳,获得10
4分钟前
慕青应助勇往直前采纳,获得10
5分钟前
5分钟前
dawn完成签到,获得积分10
5分钟前
5分钟前
5分钟前
dawn发布了新的文献求助10
5分钟前
勇往直前发布了新的文献求助10
5分钟前
郡邑发布了新的文献求助10
5分钟前
5分钟前
猪仔5号发布了新的文献求助10
5分钟前
行走完成签到,获得积分10
6分钟前
6分钟前
郡邑完成签到,获得积分10
6分钟前
6分钟前
浮华应助reds采纳,获得10
6分钟前
猪仔5号发布了新的文献求助10
7分钟前
思源应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302883
求助须知:如何正确求助?哪些是违规求助? 4449956
关于积分的说明 13848801
捐赠科研通 4336251
什么是DOI,文献DOI怎么找? 2380859
邀请新用户注册赠送积分活动 1375812
关于科研通互助平台的介绍 1342188