RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method

计算机科学 数学优化 元启发式 局部最优 趋同(经济学) 隐喻 算法 人工智能 数学 语言学 哲学 经济 经济增长
作者
Iman Ahmadianfar,Ali Asghar Heidari,Amir H. Gandomi,Xuefeng Chu,Huiling Chen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:181: 115079-115079 被引量:899
标识
DOI:10.1016/j.eswa.2021.115079
摘要

The optimization field suffers from the metaphor-based “pseudo-novel” or “fancy” optimizers. Most of these cliché methods mimic animals' searching trends and possess a small contribution to the optimization process itself. Most of these cliché methods suffer from the locally efficient performance, biased verification methods on easy problems, and high similarity between their components' interactions. This study attempts to go beyond the traps of metaphors and introduce a novel metaphor-free population-based optimization method based on the mathematical foundations and ideas of the Runge Kutta (RK) method widely well-known in mathematics. The proposed RUNge Kutta optimizer (RUN) was developed to deal with various types of optimization problems in the future. The RUN utilizes the logic of slope variations computed by the RK method as a promising and logical searching mechanism for global optimization. This search mechanism benefits from two active exploration and exploitation phases for exploring the promising regions in the feature space and constructive movement toward the global best solution. Furthermore, an enhanced solution quality (ESQ) mechanism is employed to avoid the local optimal solutions and increase convergence speed. The RUN algorithm's efficiency was evaluated by comparing with other metaheuristic algorithms in 50 mathematical test functions and four real-world engineering problems. The RUN provided very promising and competitive results, showing superior exploration and exploitation tendencies, fast convergence rate, and local optima avoidance. In optimizing the constrained engineering problems, the metaphor-free RUN demonstrated its suitable performance as well. The authors invite the community for extensive evaluations of this deep-rooted optimizer as a promising tool for real-world optimization. The source codes, supplementary materials, and guidance for the developed method will be publicly available at different hubs at http://imanahmadianfar.com and http://aliasgharheidari.com/RUN.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
卷卷完成签到,获得积分10
刚刚
1秒前
深情安青应助笨鸟先飞采纳,获得10
1秒前
2秒前
2秒前
五十完成签到,获得积分10
2秒前
宇文沛岚完成签到,获得积分10
2秒前
hejeamy发布了新的文献求助10
2秒前
2秒前
3秒前
英俊的铭应助无名采纳,获得10
3秒前
3秒前
Yi发布了新的文献求助10
4秒前
5秒前
比卜不完成签到,获得积分10
5秒前
弗洛伊德完成签到 ,获得积分10
6秒前
Yi发布了新的文献求助10
6秒前
6秒前
6秒前
脑洞疼应助Alan采纳,获得10
7秒前
英俊的铭应助LaLaC采纳,获得10
7秒前
7秒前
爆米花应助Monica采纳,获得10
8秒前
8秒前
Anoxra完成签到 ,获得积分10
9秒前
不会发芽的土豆泥完成签到,获得积分10
9秒前
Alvin完成签到,获得积分10
9秒前
科研通AI6应助xzl采纳,获得30
9秒前
小李完成签到,获得积分10
10秒前
10秒前
是真的不吃鱼完成签到 ,获得积分10
10秒前
msk完成签到 ,获得积分10
11秒前
发发旦旦完成签到,获得积分10
11秒前
wen发布了新的文献求助10
11秒前
不安的宛丝完成签到,获得积分10
12秒前
李健应助心楠采纳,获得30
12秒前
dandandan完成签到 ,获得积分10
12秒前
bbb发布了新的文献求助10
12秒前
笨鸟先飞发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600383
求助须知:如何正确求助?哪些是违规求助? 4686008
关于积分的说明 14841407
捐赠科研通 4676475
什么是DOI,文献DOI怎么找? 2538721
邀请新用户注册赠送积分活动 1505781
关于科研通互助平台的介绍 1471186