RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method

计算机科学 数学优化 元启发式 局部最优 趋同(经济学) 隐喻 算法 人工智能 数学 语言学 哲学 经济 经济增长
作者
Iman Ahmadianfar,Ali Asghar Heidari,Amir H. Gandomi,Xuefeng Chu,Huiling Chen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:181: 115079-115079 被引量:899
标识
DOI:10.1016/j.eswa.2021.115079
摘要

The optimization field suffers from the metaphor-based “pseudo-novel” or “fancy” optimizers. Most of these cliché methods mimic animals' searching trends and possess a small contribution to the optimization process itself. Most of these cliché methods suffer from the locally efficient performance, biased verification methods on easy problems, and high similarity between their components' interactions. This study attempts to go beyond the traps of metaphors and introduce a novel metaphor-free population-based optimization method based on the mathematical foundations and ideas of the Runge Kutta (RK) method widely well-known in mathematics. The proposed RUNge Kutta optimizer (RUN) was developed to deal with various types of optimization problems in the future. The RUN utilizes the logic of slope variations computed by the RK method as a promising and logical searching mechanism for global optimization. This search mechanism benefits from two active exploration and exploitation phases for exploring the promising regions in the feature space and constructive movement toward the global best solution. Furthermore, an enhanced solution quality (ESQ) mechanism is employed to avoid the local optimal solutions and increase convergence speed. The RUN algorithm's efficiency was evaluated by comparing with other metaheuristic algorithms in 50 mathematical test functions and four real-world engineering problems. The RUN provided very promising and competitive results, showing superior exploration and exploitation tendencies, fast convergence rate, and local optima avoidance. In optimizing the constrained engineering problems, the metaphor-free RUN demonstrated its suitable performance as well. The authors invite the community for extensive evaluations of this deep-rooted optimizer as a promising tool for real-world optimization. The source codes, supplementary materials, and guidance for the developed method will be publicly available at different hubs at http://imanahmadianfar.com and http://aliasgharheidari.com/RUN.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助ZIS采纳,获得10
刚刚
Ava应助邹香香采纳,获得10
刚刚
1秒前
科研通AI6.1应助hcg采纳,获得10
2秒前
未夕晴完成签到,获得积分10
2秒前
henryjun发布了新的文献求助10
2秒前
2秒前
Hello应助AmyDong采纳,获得10
2秒前
我是老大应助俭朴听南采纳,获得10
2秒前
2秒前
unaqvq发布了新的文献求助10
3秒前
可爱的函函应助何东旭采纳,获得10
4秒前
4秒前
5秒前
科研通AI6.1应助在水一方采纳,获得30
5秒前
shuang完成签到,获得积分10
6秒前
7秒前
合适的嵩发布了新的文献求助10
7秒前
7秒前
阿白完成签到,获得积分10
7秒前
舒心盼曼发布了新的文献求助30
8秒前
AmyDong完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
小杨发布了新的文献求助10
10秒前
阿司匹林完成签到,获得积分10
10秒前
10秒前
忘记密码发布了新的文献求助10
11秒前
11秒前
h0jian09完成签到,获得积分10
12秒前
和谐耳机完成签到 ,获得积分10
12秒前
William发布了新的文献求助10
12秒前
Hh完成签到,获得积分10
13秒前
13秒前
ZIS发布了新的文献求助10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743404
求助须知:如何正确求助?哪些是违规求助? 5413822
关于积分的说明 15347458
捐赠科研通 4884191
什么是DOI,文献DOI怎么找? 2625636
邀请新用户注册赠送积分活动 1574492
关于科研通互助平台的介绍 1531400