已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method

计算机科学 数学优化 元启发式 局部最优 趋同(经济学) 隐喻 算法 人工智能 数学 语言学 哲学 经济 经济增长
作者
Iman Ahmadianfar,Ali Asghar Heidari,Amir H. Gandomi,Xuefeng Chu,Huiling Chen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:181: 115079-115079 被引量:899
标识
DOI:10.1016/j.eswa.2021.115079
摘要

The optimization field suffers from the metaphor-based “pseudo-novel” or “fancy” optimizers. Most of these cliché methods mimic animals' searching trends and possess a small contribution to the optimization process itself. Most of these cliché methods suffer from the locally efficient performance, biased verification methods on easy problems, and high similarity between their components' interactions. This study attempts to go beyond the traps of metaphors and introduce a novel metaphor-free population-based optimization method based on the mathematical foundations and ideas of the Runge Kutta (RK) method widely well-known in mathematics. The proposed RUNge Kutta optimizer (RUN) was developed to deal with various types of optimization problems in the future. The RUN utilizes the logic of slope variations computed by the RK method as a promising and logical searching mechanism for global optimization. This search mechanism benefits from two active exploration and exploitation phases for exploring the promising regions in the feature space and constructive movement toward the global best solution. Furthermore, an enhanced solution quality (ESQ) mechanism is employed to avoid the local optimal solutions and increase convergence speed. The RUN algorithm's efficiency was evaluated by comparing with other metaheuristic algorithms in 50 mathematical test functions and four real-world engineering problems. The RUN provided very promising and competitive results, showing superior exploration and exploitation tendencies, fast convergence rate, and local optima avoidance. In optimizing the constrained engineering problems, the metaphor-free RUN demonstrated its suitable performance as well. The authors invite the community for extensive evaluations of this deep-rooted optimizer as a promising tool for real-world optimization. The source codes, supplementary materials, and guidance for the developed method will be publicly available at different hubs at http://imanahmadianfar.com and http://aliasgharheidari.com/RUN.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路鸣杉发布了新的文献求助10
1秒前
3秒前
movoandy发布了新的文献求助100
3秒前
Setlla完成签到 ,获得积分10
4秒前
6秒前
7秒前
激动的寻凝完成签到,获得积分10
8秒前
秦风完成签到 ,获得积分10
9秒前
10秒前
11秒前
xp1911发布了新的文献求助10
11秒前
夜雨完成签到,获得积分10
11秒前
ZH完成签到 ,获得积分10
12秒前
enen发布了新的文献求助10
12秒前
12秒前
勤奋幻柏完成签到,获得积分10
13秒前
科研通AI6应助1010采纳,获得10
14秒前
14秒前
14秒前
tree完成签到 ,获得积分10
18秒前
王cc发布了新的文献求助10
19秒前
温馨家园完成签到 ,获得积分10
20秒前
21秒前
研友_08okB8完成签到,获得积分10
21秒前
自然千山完成签到,获得积分10
22秒前
加油杨完成签到 ,获得积分10
25秒前
张嘉雯完成签到 ,获得积分10
26秒前
茶蛋完成签到 ,获得积分10
26秒前
mushiyu完成签到 ,获得积分20
28秒前
再睡十分钟完成签到 ,获得积分10
28秒前
xp1911发布了新的文献求助10
29秒前
sharkboy完成签到,获得积分10
29秒前
Mr完成签到 ,获得积分10
29秒前
31秒前
心随以动完成签到 ,获得积分10
31秒前
31秒前
传奇3应助姜姜采纳,获得10
31秒前
遇见十二月完成签到,获得积分10
32秒前
无私的寄灵完成签到 ,获得积分10
32秒前
闪闪发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627596
求助须知:如何正确求助?哪些是违规求助? 4714312
关于积分的说明 14962855
捐赠科研通 4785241
什么是DOI,文献DOI怎么找? 2555047
邀请新用户注册赠送积分活动 1516447
关于科研通互助平台的介绍 1476819