RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method

计算机科学 数学优化 元启发式 局部最优 趋同(经济学) 隐喻 算法 人工智能 数学 语言学 哲学 经济 经济增长
作者
Iman Ahmadianfar,Ali Asghar Heidari,Amir H. Gandomi,Xuefeng Chu,Huiling Chen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:181: 115079-115079 被引量:751
标识
DOI:10.1016/j.eswa.2021.115079
摘要

The optimization field suffers from the metaphor-based “pseudo-novel” or “fancy” optimizers. Most of these cliché methods mimic animals' searching trends and possess a small contribution to the optimization process itself. Most of these cliché methods suffer from the locally efficient performance, biased verification methods on easy problems, and high similarity between their components' interactions. This study attempts to go beyond the traps of metaphors and introduce a novel metaphor-free population-based optimization method based on the mathematical foundations and ideas of the Runge Kutta (RK) method widely well-known in mathematics. The proposed RUNge Kutta optimizer (RUN) was developed to deal with various types of optimization problems in the future. The RUN utilizes the logic of slope variations computed by the RK method as a promising and logical searching mechanism for global optimization. This search mechanism benefits from two active exploration and exploitation phases for exploring the promising regions in the feature space and constructive movement toward the global best solution. Furthermore, an enhanced solution quality (ESQ) mechanism is employed to avoid the local optimal solutions and increase convergence speed. The RUN algorithm's efficiency was evaluated by comparing with other metaheuristic algorithms in 50 mathematical test functions and four real-world engineering problems. The RUN provided very promising and competitive results, showing superior exploration and exploitation tendencies, fast convergence rate, and local optima avoidance. In optimizing the constrained engineering problems, the metaphor-free RUN demonstrated its suitable performance as well. The authors invite the community for extensive evaluations of this deep-rooted optimizer as a promising tool for real-world optimization. The source codes, supplementary materials, and guidance for the developed method will be publicly available at different hubs at http://imanahmadianfar.com and http://aliasgharheidari.com/RUN.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
昏睡的天曼完成签到,获得积分20
2秒前
鲜艳的冰颜完成签到,获得积分10
3秒前
陆东发布了新的文献求助10
3秒前
4秒前
4秒前
JamesPei应助温暖静柏采纳,获得10
6秒前
7秒前
小树发布了新的文献求助10
7秒前
纸飞机的梦完成签到,获得积分10
9秒前
linguobin完成签到,获得积分10
9秒前
美好雨竹发布了新的文献求助10
10秒前
JamesPei应助贺兰生羽采纳,获得10
11秒前
啦啦啦发布了新的文献求助10
13秒前
14秒前
JamesPei应助mou采纳,获得10
16秒前
路灯下的小伙完成签到 ,获得积分10
16秒前
微笑海冬完成签到,获得积分10
17秒前
lxl完成签到,获得积分10
18秒前
温暖静柏完成签到,获得积分10
18秒前
Orange应助霖槿采纳,获得10
18秒前
19秒前
美好雨竹完成签到,获得积分10
20秒前
Tiam完成签到 ,获得积分10
22秒前
唐唐发布了新的文献求助10
24秒前
zhaohu47完成签到,获得积分10
25秒前
Lucas应助kkk采纳,获得10
26秒前
良辰应助温暖易云采纳,获得10
26秒前
26秒前
劲秉应助啦啦啦采纳,获得10
26秒前
iiiid发布了新的文献求助10
26秒前
杳鸢应助滕十八采纳,获得30
29秒前
29秒前
31秒前
lxl发布了新的文献求助10
31秒前
温暖静柏发布了新的文献求助10
33秒前
共享精神应助张祖伦采纳,获得10
33秒前
Alicia完成签到 ,获得积分10
35秒前
霖槿发布了新的文献求助10
35秒前
慧妞完成签到 ,获得积分10
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297381
求助须知:如何正确求助?哪些是违规求助? 2932792
关于积分的说明 8459595
捐赠科研通 2605614
什么是DOI,文献DOI怎么找? 1422455
科研通“疑难数据库(出版商)”最低求助积分说明 661383
邀请新用户注册赠送积分活动 644729