亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method

计算机科学 数学优化 元启发式 局部最优 趋同(经济学) 隐喻 算法 人工智能 数学 语言学 哲学 经济 经济增长
作者
Iman Ahmadianfar,Ali Asghar Heidari,Amir H. Gandomi,Xuefeng Chu,Huiling Chen
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:181: 115079-115079 被引量:899
标识
DOI:10.1016/j.eswa.2021.115079
摘要

The optimization field suffers from the metaphor-based “pseudo-novel” or “fancy” optimizers. Most of these cliché methods mimic animals' searching trends and possess a small contribution to the optimization process itself. Most of these cliché methods suffer from the locally efficient performance, biased verification methods on easy problems, and high similarity between their components' interactions. This study attempts to go beyond the traps of metaphors and introduce a novel metaphor-free population-based optimization method based on the mathematical foundations and ideas of the Runge Kutta (RK) method widely well-known in mathematics. The proposed RUNge Kutta optimizer (RUN) was developed to deal with various types of optimization problems in the future. The RUN utilizes the logic of slope variations computed by the RK method as a promising and logical searching mechanism for global optimization. This search mechanism benefits from two active exploration and exploitation phases for exploring the promising regions in the feature space and constructive movement toward the global best solution. Furthermore, an enhanced solution quality (ESQ) mechanism is employed to avoid the local optimal solutions and increase convergence speed. The RUN algorithm's efficiency was evaluated by comparing with other metaheuristic algorithms in 50 mathematical test functions and four real-world engineering problems. The RUN provided very promising and competitive results, showing superior exploration and exploitation tendencies, fast convergence rate, and local optima avoidance. In optimizing the constrained engineering problems, the metaphor-free RUN demonstrated its suitable performance as well. The authors invite the community for extensive evaluations of this deep-rooted optimizer as a promising tool for real-world optimization. The source codes, supplementary materials, and guidance for the developed method will be publicly available at different hubs at http://imanahmadianfar.com and http://aliasgharheidari.com/RUN.html.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoxingxing发布了新的文献求助30
2秒前
无产阶级科学者完成签到,获得积分10
13秒前
yyds举报胡子求助涉嫌违规
15秒前
16秒前
科研通AI2S应助柠檬采纳,获得10
17秒前
samsijyu发布了新的文献求助10
17秒前
Am1r发布了新的文献求助10
18秒前
负责语海发布了新的文献求助10
22秒前
斯文败类应助顶顶顶采纳,获得10
24秒前
绿色植物发布了新的文献求助10
28秒前
科目三应助Hao采纳,获得10
30秒前
星辰大海应助负责语海采纳,获得10
30秒前
JamesPei应助xlxu采纳,获得10
31秒前
31秒前
MiaCong完成签到 ,获得积分10
31秒前
猫猫完成签到 ,获得积分10
32秒前
充电宝应助科研通管家采纳,获得10
37秒前
37秒前
英俊的铭应助科研通管家采纳,获得10
37秒前
37秒前
39秒前
白小超人完成签到 ,获得积分10
43秒前
涅爹完成签到 ,获得积分10
44秒前
Hao发布了新的文献求助10
45秒前
48秒前
48秒前
所所应助懒骨头兄采纳,获得10
50秒前
斯文的楷瑞完成签到,获得积分10
54秒前
hahahan完成签到 ,获得积分10
57秒前
凡舍完成签到 ,获得积分10
58秒前
渟柠完成签到,获得积分20
1分钟前
桐桐应助张萌采纳,获得10
1分钟前
Am1r完成签到,获得积分10
1分钟前
1分钟前
希望天下0贩的0应助渟柠采纳,获得10
1分钟前
asd发布了新的文献求助10
1分钟前
淡漠完成签到 ,获得积分10
1分钟前
samsijyu发布了新的文献求助10
1分钟前
memory完成签到,获得积分10
1分钟前
VDC发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616992
求助须知:如何正确求助?哪些是违规求助? 4701328
关于积分的说明 14913361
捐赠科研通 4747615
什么是DOI,文献DOI怎么找? 2549174
邀请新用户注册赠送积分活动 1512299
关于科研通互助平台的介绍 1474049