已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study

概化理论 分割 深度学习 人工智能 公制(单位) 医学物理学 医学 临床实习 头颈部 计算机科学 放射治疗计划 数据集 放射治疗 机器学习 放射科 外科 物理疗法 统计 数学 运营管理 经济
作者
Stanislav Nikolov,Sam Blackwell,Alexei Zverovitch,R. Mendes,Michelle Livne,Jeffrey De Fauw,Yojan Patel,Clemens Meyer,Harry Askham,Bernardino Romera‐Paredes,Christopher Kelly,Alan Karthikesalingam,Carlton Chu,Dawn Carnell,C.S. Boon,D. D’Souza,Syed Moinuddin,Bethany Garie,Yasmin McQuinlan,Sarah Ireland,Kiarna Hampton,Krystle Fuller,Hugh Montgomery,Geraint Rees,Mustafa Suleyman,Trevor Back,Cían Hughes,Joseph R. Ledsam,Olaf Ronneberger
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:23 (7): e26151-e26151 被引量:241
标识
DOI:10.2196/26151
摘要

Over half a million individuals are diagnosed with head and neck cancer each year globally. Radiotherapy is an important curative treatment for this disease, but it requires manual time to delineate radiosensitive organs at risk. This planning process can delay treatment while also introducing interoperator variability, resulting in downstream radiation dose differences. Although auto-segmentation algorithms offer a potentially time-saving solution, the challenges in defining, quantifying, and achieving expert performance remain.Adopting a deep learning approach, we aim to demonstrate a 3D U-Net architecture that achieves expert-level performance in delineating 21 distinct head and neck organs at risk commonly segmented in clinical practice.The model was trained on a data set of 663 deidentified computed tomography scans acquired in routine clinical practice and with both segmentations taken from clinical practice and segmentations created by experienced radiographers as part of this research, all in accordance with consensus organ at risk definitions.We demonstrated the model's clinical applicability by assessing its performance on a test set of 21 computed tomography scans from clinical practice, each with 21 organs at risk segmented by 2 independent experts. We also introduced surface Dice similarity coefficient, a new metric for the comparison of organ delineation, to quantify the deviation between organ at risk surface contours rather than volumes, better reflecting the clinical task of correcting errors in automated organ segmentations. The model's generalizability was then demonstrated on 2 distinct open-source data sets, reflecting different centers and countries to model training.Deep learning is an effective and clinically applicable technique for the segmentation of the head and neck anatomy for radiotherapy. With appropriate validation studies and regulatory approvals, this system could improve the efficiency, consistency, and safety of radiotherapy pathways.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz完成签到,获得积分20
刚刚
1秒前
吱吱熊sama完成签到,获得积分10
1秒前
无情的井完成签到,获得积分10
2秒前
888完成签到,获得积分10
2秒前
3秒前
4秒前
888发布了新的文献求助30
5秒前
7秒前
7秒前
威武寒珊完成签到,获得积分10
8秒前
zzz发布了新的文献求助10
11秒前
WLL完成签到,获得积分20
12秒前
shy完成签到,获得积分10
13秒前
威武寒珊发布了新的文献求助10
14秒前
15秒前
菜根谭完成签到 ,获得积分10
16秒前
动听衬衫完成签到 ,获得积分10
16秒前
23秒前
奖品肉麻膏耶完成签到 ,获得积分10
25秒前
若云完成签到 ,获得积分10
25秒前
CipherSage应助威武寒珊采纳,获得10
32秒前
33秒前
专注小刺猬完成签到 ,获得积分10
35秒前
38秒前
38秒前
42秒前
43秒前
侯栋发布了新的文献求助10
44秒前
完美世界应助甘楽采纳,获得10
44秒前
47秒前
小马甲应助医科大学菜鸡采纳,获得10
47秒前
richie发布了新的文献求助10
47秒前
fcc完成签到 ,获得积分10
48秒前
大溺完成签到 ,获得积分10
49秒前
naych发布了新的文献求助38
49秒前
端庄亦巧完成签到 ,获得积分10
50秒前
53秒前
隐形初雪完成签到 ,获得积分10
58秒前
李健的小迷弟应助richie采纳,获得30
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407525
求助须知:如何正确求助?哪些是违规求助? 4525104
关于积分的说明 14101027
捐赠科研通 4438870
什么是DOI,文献DOI怎么找? 2436526
邀请新用户注册赠送积分活动 1428500
关于科研通互助平台的介绍 1406507