Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study

概化理论 分割 深度学习 人工智能 公制(单位) 医学物理学 医学 临床实习 头颈部 计算机科学 放射治疗计划 数据集 放射治疗 机器学习 放射科 外科 物理疗法 统计 数学 运营管理 经济
作者
Stanislav Nikolov,Sam Blackwell,Alexei Zverovitch,R. Mendes,Michelle Livne,Jeffrey De Fauw,Yojan Patel,Clemens Meyer,Harry Askham,Bernardino Romera‐Paredes,Christopher Kelly,Alan Karthikesalingam,Carlton Chu,Dawn Carnell,C.S. Boon,D. D’Souza,Syed Moinuddin,Bethany Garie,Yasmin McQuinlan,Sarah Ireland,Kiarna Hampton,Krystle Fuller,Hugh Montgomery,Geraint Rees,Mustafa Suleyman,Trevor Back,Cían Hughes,Joseph R. Ledsam,Olaf Ronneberger
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:23 (7): e26151-e26151 被引量:241
标识
DOI:10.2196/26151
摘要

Over half a million individuals are diagnosed with head and neck cancer each year globally. Radiotherapy is an important curative treatment for this disease, but it requires manual time to delineate radiosensitive organs at risk. This planning process can delay treatment while also introducing interoperator variability, resulting in downstream radiation dose differences. Although auto-segmentation algorithms offer a potentially time-saving solution, the challenges in defining, quantifying, and achieving expert performance remain.Adopting a deep learning approach, we aim to demonstrate a 3D U-Net architecture that achieves expert-level performance in delineating 21 distinct head and neck organs at risk commonly segmented in clinical practice.The model was trained on a data set of 663 deidentified computed tomography scans acquired in routine clinical practice and with both segmentations taken from clinical practice and segmentations created by experienced radiographers as part of this research, all in accordance with consensus organ at risk definitions.We demonstrated the model's clinical applicability by assessing its performance on a test set of 21 computed tomography scans from clinical practice, each with 21 organs at risk segmented by 2 independent experts. We also introduced surface Dice similarity coefficient, a new metric for the comparison of organ delineation, to quantify the deviation between organ at risk surface contours rather than volumes, better reflecting the clinical task of correcting errors in automated organ segmentations. The model's generalizability was then demonstrated on 2 distinct open-source data sets, reflecting different centers and countries to model training.Deep learning is an effective and clinically applicable technique for the segmentation of the head and neck anatomy for radiotherapy. With appropriate validation studies and regulatory approvals, this system could improve the efficiency, consistency, and safety of radiotherapy pathways.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张靖松完成签到 ,获得积分20
刚刚
刚刚
甜美的觅荷完成签到,获得积分10
刚刚
刚刚
云书完成签到 ,获得积分10
1秒前
ZZ应助Henry采纳,获得10
2秒前
2秒前
窗窗窗雨完成签到,获得积分10
2秒前
小安完成签到,获得积分10
2秒前
Ryan完成签到 ,获得积分10
3秒前
liu完成签到,获得积分10
3秒前
lidagou发布了新的文献求助10
4秒前
搬砖美少女完成签到,获得积分10
4秒前
wxt完成签到,获得积分10
5秒前
6秒前
隔壁的邻家小兴完成签到,获得积分10
6秒前
星辰大海应助拼搏vv采纳,获得10
7秒前
程传勇发布了新的文献求助10
7秒前
chx123完成签到,获得积分10
8秒前
8秒前
9秒前
葛稀完成签到,获得积分10
9秒前
你好完成签到,获得积分10
10秒前
HFW完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
orixero应助lidagou采纳,获得10
14秒前
慕青应助坦率的之卉采纳,获得10
15秒前
星之发布了新的文献求助10
15秒前
15秒前
求助发布了新的文献求助10
15秒前
JamesPei应助芳芳采纳,获得10
17秒前
孙刚完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
顾矜应助巴山石也采纳,获得10
21秒前
彭于晏应助碧蓝青梦采纳,获得10
22秒前
rodrisk完成签到 ,获得积分10
22秒前
22秒前
Sunny发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5733271
求助须知:如何正确求助?哪些是违规求助? 5347662
关于积分的说明 15323495
捐赠科研通 4878407
什么是DOI,文献DOI怎么找? 2621220
邀请新用户注册赠送积分活动 1570329
关于科研通互助平台的介绍 1527224