Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study

概化理论 分割 深度学习 人工智能 公制(单位) 医学物理学 医学 临床实习 头颈部 计算机科学 放射治疗计划 数据集 放射治疗 机器学习 放射科 外科 物理疗法 统计 数学 运营管理 经济
作者
Stanislav Nikolov,Sam Blackwell,Alexei Zverovitch,R. Mendes,Michelle Livne,Jeffrey De Fauw,Yojan Patel,Clemens Meyer,Harry Askham,Bernardino Romera‐Paredes,Christopher Kelly,Alan Karthikesalingam,Carlton Chu,Dawn Carnell,C.S. Boon,D. D’Souza,Syed Moinuddin,Bethany Garie,Yasmin McQuinlan,Sarah Ireland,Kiarna Hampton,Krystle Fuller,Hugh Montgomery,Geraint Rees,Mustafa Suleyman,Trevor Back,Cían Hughes,Joseph R. Ledsam,Olaf Ronneberger
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:23 (7): e26151-e26151 被引量:241
标识
DOI:10.2196/26151
摘要

Over half a million individuals are diagnosed with head and neck cancer each year globally. Radiotherapy is an important curative treatment for this disease, but it requires manual time to delineate radiosensitive organs at risk. This planning process can delay treatment while also introducing interoperator variability, resulting in downstream radiation dose differences. Although auto-segmentation algorithms offer a potentially time-saving solution, the challenges in defining, quantifying, and achieving expert performance remain.Adopting a deep learning approach, we aim to demonstrate a 3D U-Net architecture that achieves expert-level performance in delineating 21 distinct head and neck organs at risk commonly segmented in clinical practice.The model was trained on a data set of 663 deidentified computed tomography scans acquired in routine clinical practice and with both segmentations taken from clinical practice and segmentations created by experienced radiographers as part of this research, all in accordance with consensus organ at risk definitions.We demonstrated the model's clinical applicability by assessing its performance on a test set of 21 computed tomography scans from clinical practice, each with 21 organs at risk segmented by 2 independent experts. We also introduced surface Dice similarity coefficient, a new metric for the comparison of organ delineation, to quantify the deviation between organ at risk surface contours rather than volumes, better reflecting the clinical task of correcting errors in automated organ segmentations. The model's generalizability was then demonstrated on 2 distinct open-source data sets, reflecting different centers and countries to model training.Deep learning is an effective and clinically applicable technique for the segmentation of the head and neck anatomy for radiotherapy. With appropriate validation studies and regulatory approvals, this system could improve the efficiency, consistency, and safety of radiotherapy pathways.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
前行者完成签到,获得积分10
1秒前
小马甲应助111111zx111采纳,获得10
1秒前
4秒前
9秒前
风趣问雁完成签到 ,获得积分10
10秒前
10秒前
11秒前
111111zx111发布了新的文献求助10
14秒前
15秒前
温柔季节发布了新的文献求助10
16秒前
song完成签到 ,获得积分10
16秒前
qqq发布了新的文献求助10
16秒前
17秒前
17秒前
JamesPei应助王武聪采纳,获得10
18秒前
Rondab应助失眠的狗采纳,获得10
20秒前
21秒前
21秒前
wkjfh完成签到,获得积分0
22秒前
唐卟哩钵完成签到,获得积分10
22秒前
Rondab应助hg08采纳,获得10
23秒前
拓跋凝海完成签到,获得积分10
23秒前
23秒前
25秒前
26秒前
沉默的宛筠应助liu采纳,获得10
26秒前
Transition发布了新的文献求助10
27秒前
家家完成签到 ,获得积分10
27秒前
默默的如凡完成签到,获得积分10
27秒前
28秒前
ioio发布了新的文献求助10
28秒前
qqq完成签到,获得积分10
30秒前
31秒前
天天快乐应助Amon采纳,获得10
32秒前
34秒前
36秒前
包李发布了新的文献求助10
38秒前
111111zx111完成签到,获得积分10
39秒前
精美礼物给精美礼物的求助进行了留言
40秒前
NexusExplorer应助raolixiang采纳,获得10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989797
求助须知:如何正确求助?哪些是违规求助? 3531914
关于积分的说明 11255516
捐赠科研通 3270597
什么是DOI,文献DOI怎么找? 1805008
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809190