Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study

概化理论 分割 深度学习 人工智能 公制(单位) 医学物理学 医学 临床实习 头颈部 计算机科学 放射治疗计划 数据集 放射治疗 机器学习 放射科 外科 物理疗法 统计 数学 运营管理 经济
作者
Stanislav Nikolov,Sam Blackwell,Alexei Zverovitch,R. Mendes,Michelle Livne,Jeffrey De Fauw,Yojan Patel,Clemens Meyer,Harry Askham,Bernardino Romera‐Paredes,Christopher Kelly,Alan Karthikesalingam,Carlton Chu,Dawn Carnell,C.S. Boon,D. D’Souza,Syed Moinuddin,Bethany Garie,Yasmin McQuinlan,Sarah Ireland,Kiarna Hampton,Krystle Fuller,Hugh Montgomery,Geraint Rees,Mustafa Suleyman,Trevor Back,Cían Hughes,Joseph R. Ledsam,Olaf Ronneberger
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:23 (7): e26151-e26151 被引量:241
标识
DOI:10.2196/26151
摘要

Over half a million individuals are diagnosed with head and neck cancer each year globally. Radiotherapy is an important curative treatment for this disease, but it requires manual time to delineate radiosensitive organs at risk. This planning process can delay treatment while also introducing interoperator variability, resulting in downstream radiation dose differences. Although auto-segmentation algorithms offer a potentially time-saving solution, the challenges in defining, quantifying, and achieving expert performance remain.Adopting a deep learning approach, we aim to demonstrate a 3D U-Net architecture that achieves expert-level performance in delineating 21 distinct head and neck organs at risk commonly segmented in clinical practice.The model was trained on a data set of 663 deidentified computed tomography scans acquired in routine clinical practice and with both segmentations taken from clinical practice and segmentations created by experienced radiographers as part of this research, all in accordance with consensus organ at risk definitions.We demonstrated the model's clinical applicability by assessing its performance on a test set of 21 computed tomography scans from clinical practice, each with 21 organs at risk segmented by 2 independent experts. We also introduced surface Dice similarity coefficient, a new metric for the comparison of organ delineation, to quantify the deviation between organ at risk surface contours rather than volumes, better reflecting the clinical task of correcting errors in automated organ segmentations. The model's generalizability was then demonstrated on 2 distinct open-source data sets, reflecting different centers and countries to model training.Deep learning is an effective and clinically applicable technique for the segmentation of the head and neck anatomy for radiotherapy. With appropriate validation studies and regulatory approvals, this system could improve the efficiency, consistency, and safety of radiotherapy pathways.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陆王牛马完成签到 ,获得积分10
刚刚
刚刚
Ava应助念念采纳,获得10
1秒前
LIAO完成签到,获得积分10
1秒前
迅速凝竹完成签到 ,获得积分10
3秒前
妮妮完成签到,获得积分10
4秒前
4秒前
哈哈哈完成签到,获得积分20
5秒前
快乐随心完成签到 ,获得积分10
6秒前
了一李完成签到 ,获得积分10
6秒前
fqk完成签到,获得积分10
6秒前
活泼新儿完成签到,获得积分10
6秒前
7秒前
老迟到的羊完成签到 ,获得积分10
7秒前
可爱的函函应助sl采纳,获得30
11秒前
CatC完成签到,获得积分10
11秒前
LIKO完成签到,获得积分10
11秒前
11秒前
11秒前
David发布了新的文献求助10
12秒前
12秒前
clock完成签到 ,获得积分10
12秒前
风中小懒虫完成签到,获得积分10
13秒前
cindy完成签到 ,获得积分10
14秒前
Tysonqu完成签到,获得积分10
14秒前
科研通AI2S应助Promise采纳,获得10
15秒前
16秒前
淡淡阁完成签到 ,获得积分10
16秒前
念念发布了新的文献求助10
16秒前
漂亮的秋天完成签到 ,获得积分10
18秒前
David完成签到,获得积分10
18秒前
Jason完成签到,获得积分10
18秒前
22秒前
23秒前
23秒前
YY完成签到,获得积分10
24秒前
调皮的凝旋完成签到,获得积分10
25秒前
25秒前
念念完成签到,获得积分20
26秒前
崔悦欣完成签到,获得积分10
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038388
求助须知:如何正确求助?哪些是违规求助? 3576106
关于积分的说明 11374447
捐赠科研通 3305798
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029