亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Clinically Applicable Segmentation of Head and Neck Anatomy for Radiotherapy: Deep Learning Algorithm Development and Validation Study

概化理论 分割 深度学习 人工智能 公制(单位) 医学物理学 医学 临床实习 头颈部 计算机科学 放射治疗计划 数据集 放射治疗 机器学习 放射科 外科 物理疗法 统计 运营管理 数学 经济
作者
Stanislav Nikolov,Sam Blackwell,Alexei Zverovitch,R. Mendes,Michelle Livne,Jeffrey De Fauw,Yojan Patel,Clemens Meyer,Harry Askham,Bernardino Romera‐Paredes,Christopher Kelly,Alan Karthikesalingam,Carlton Chu,Dawn Carnell,C.S. Boon,D. D’Souza,Syed Moinuddin,Bethany Garie,Yasmin McQuinlan,Sarah Ireland,Kiarna Hampton,Krystle Fuller,Hugh Montgomery,Geraint Rees,Mustafa Suleyman,Trevor Back,Cían Hughes,Joseph R. Ledsam,Olaf Ronneberger
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:23 (7): e26151-e26151 被引量:241
标识
DOI:10.2196/26151
摘要

Over half a million individuals are diagnosed with head and neck cancer each year globally. Radiotherapy is an important curative treatment for this disease, but it requires manual time to delineate radiosensitive organs at risk. This planning process can delay treatment while also introducing interoperator variability, resulting in downstream radiation dose differences. Although auto-segmentation algorithms offer a potentially time-saving solution, the challenges in defining, quantifying, and achieving expert performance remain.Adopting a deep learning approach, we aim to demonstrate a 3D U-Net architecture that achieves expert-level performance in delineating 21 distinct head and neck organs at risk commonly segmented in clinical practice.The model was trained on a data set of 663 deidentified computed tomography scans acquired in routine clinical practice and with both segmentations taken from clinical practice and segmentations created by experienced radiographers as part of this research, all in accordance with consensus organ at risk definitions.We demonstrated the model's clinical applicability by assessing its performance on a test set of 21 computed tomography scans from clinical practice, each with 21 organs at risk segmented by 2 independent experts. We also introduced surface Dice similarity coefficient, a new metric for the comparison of organ delineation, to quantify the deviation between organ at risk surface contours rather than volumes, better reflecting the clinical task of correcting errors in automated organ segmentations. The model's generalizability was then demonstrated on 2 distinct open-source data sets, reflecting different centers and countries to model training.Deep learning is an effective and clinically applicable technique for the segmentation of the head and neck anatomy for radiotherapy. With appropriate validation studies and regulatory approvals, this system could improve the efficiency, consistency, and safety of radiotherapy pathways.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
廖梦琪完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
37秒前
学霸宇大王完成签到 ,获得积分10
40秒前
52秒前
风轻萤发布了新的文献求助10
1分钟前
1分钟前
1分钟前
_ban完成签到 ,获得积分10
1分钟前
小红书求接接接接一篇完成签到,获得积分10
1分钟前
1分钟前
潮汐发布了新的文献求助10
1分钟前
2分钟前
不羁发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
清脆的飞丹完成签到,获得积分10
3分钟前
沉静的安青完成签到,获得积分10
3分钟前
yangbohhan发布了新的文献求助10
3分钟前
bkagyin应助三口一头猪采纳,获得10
3分钟前
JrPaleo101完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
热心愫发布了新的文献求助30
4分钟前
苏震坤发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
热心愫完成签到,获得积分20
6分钟前
6分钟前
6分钟前
爱弥儿发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
快乐小狗完成签到 ,获得积分10
6分钟前
7分钟前
菠萝发布了新的文献求助10
7分钟前
满意的伊完成签到,获得积分10
7分钟前
ttxxcdx完成签到 ,获得积分10
7分钟前
越野完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611456
求助须知:如何正确求助?哪些是违规求助? 4016969
关于积分的说明 12435954
捐赠科研通 3698871
什么是DOI,文献DOI怎么找? 2039823
邀请新用户注册赠送积分活动 1072572
科研通“疑难数据库(出版商)”最低求助积分说明 956270