Relational Reasoning for Group Activity Recognition via Self-Attention Augmented Conditional Random Field

条件随机场 计算机科学 人工智能 群(周期表) 领域(数学) 模式识别(心理学) 数学 有机化学 化学 纯数学
作者
Rizard Renanda Adhi Pramono,Wen‐Hsien Fang,Yie‐Tarng Chen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 8184-8199 被引量:12
标识
DOI:10.1109/tip.2021.3113570
摘要

This paper presents a new relational network for group activity recognition. The essence of the network is to integrate conditional random fields (CRFs) with self-attention to infer the temporal dependencies and spatial relationships of the actors. This combination can take advantage of the capability of CRFs in modelling the actors' features that depend on each other and the capability of self-attention in learning the temporal evolution and spatial relational contexts of every actor in videos. Additionally, there are two distinct facets of our CRF and self-attention. First, the pairwise energy of the new CRF relies on both of the temporal self-attention and spatial self-attention, which apply the self-attention mechanism to the features in time and space, respectively. Second, to address both local and non-local relationships in group activities, the spatial self-attention takes account of a collection of cliques with different scales of spatial locality. The associated mean-field inference thereafter can thus be reformulated as a self-attention network to generate the relational contexts of the actors and their individual action labels. Lastly, a bidirectional universal transformer encoder (UTE) is utilized to aggregate the forward and backward temporal context information, scene information and relational contexts for group activity recognition. A new loss function is also employed, consisting of not only the cost for the classification of individual actions and group activities, but also a contrastive loss to address the miscellaneous relational contexts between actors. Simulations show that the new approach can surpass previous works on four commonly used datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫色奶萨发布了新的文献求助10
1秒前
完美世界应助GrainRain采纳,获得20
1秒前
会发光的星星完成签到,获得积分10
3秒前
爹爹发布了新的文献求助10
4秒前
7秒前
7秒前
Jasper应助Elevin采纳,获得10
8秒前
9秒前
小杰完成签到 ,获得积分10
9秒前
天天快乐应助11采纳,获得10
10秒前
10秒前
11秒前
Asura完成签到,获得积分10
11秒前
CodeCraft应助爹爹采纳,获得10
11秒前
wei完成签到,获得积分10
12秒前
鲜于之玉发布了新的文献求助10
12秒前
清脆大米发布了新的文献求助10
14秒前
Hello应助无心的笑蓝采纳,获得10
14秒前
14秒前
认真冷玉发布了新的文献求助10
15秒前
乐乐应助leslie采纳,获得10
17秒前
鱿鱼阿章完成签到,获得积分10
20秒前
Alias1234发布了新的文献求助10
21秒前
Cameron发布了新的文献求助50
21秒前
彭于晏应助zhangxr采纳,获得10
21秒前
一二三完成签到,获得积分10
21秒前
CodeCraft应助沉默起眸采纳,获得10
22秒前
23秒前
23秒前
23秒前
cytochrome应助小雨治大水采纳,获得20
24秒前
李爱国应助健忘天问采纳,获得10
25秒前
二平发布了新的文献求助10
26秒前
称心乐枫完成签到,获得积分10
27秒前
28秒前
wanci应助慈祥的百招采纳,获得30
29秒前
英勇明雪发布了新的文献求助10
29秒前
30秒前
斯文败类应助开朗洋葱采纳,获得10
30秒前
香蕉奎发布了新的文献求助30
32秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146304
求助须知:如何正确求助?哪些是违规求助? 2797763
关于积分的说明 7825201
捐赠科研通 2454079
什么是DOI,文献DOI怎么找? 1306010
科研通“疑难数据库(出版商)”最低求助积分说明 627638
版权声明 601503