Machine learning-based prediction of invisible intraprostatic prostate cancer lesions on 68 Ga-PSMA-11 PET/CT in patients with primary prostate cancer

前列腺癌 医学 前列腺 接收机工作特性 核医学 癌症 转移 放射科 内科学
作者
Zhilong Yi,Siqi Hu,Xiaofeng Lin,Qiong Zou,Min-Hong Zou,Zhanlei Zhang,Lei Xu,Ningyi Jiang,Yong Zhang
出处
期刊:European Journal of Nuclear Medicine and Molecular Imaging [Springer Science+Business Media]
卷期号:49 (5): 1523-1534 被引量:31
标识
DOI:10.1007/s00259-021-05631-6
摘要

68 Ga-PSMA PET/CT has high specificity and sensitivity for the detection of both intraprostatic tumor focal lesions and metastasis. However, approximately 10% of primary prostate cancer are invisible on PSMA-PET (exhibit no or minimal uptake). In this work, we investigated whether machine learning-based radiomics models derived from PSMA-PET images could predict invisible intraprostatic lesions on 68 Ga-PSMA-11 PET in patients with primary prostate cancer.In this retrospective study, patients with or without prostate cancer who underwent 68 Ga-PSMA PET/CT and presented negative on PSMA-PET image at either of two different institutions were included: institution 1 (between 2017 and 2020) for the training set and institution 2 (between 2019 and 2020) for the external test set. Three random forest (RF) models were built using selected features extracted from standard PET images, delayed PET images, and both standard and delayed PET images. Then, subsequent tenfold cross-validation was performed. In the test phase, the three RF models and PSA density (PSAD, cut-off value: 0.15 ng/ml/ml) were tested with the external test set. The area under the receiver operating characteristic curve (AUC) was calculated for the models and PSAD. The AUCs of the radiomics model and PSAD were compared.A total of 64 patients (39 with prostate cancer and 25 with benign prostate disease) were in the training set, and 36 (21 with prostate cancer and 15 with benign prostate disease) were in the test set. The average AUCs of the three RF models from tenfold cross-validation were 0.87 (95% CI: 0.72, 1.00), 0.86 (95% CI: 0.63, 1.00), and 0.91 (95% CI: 0.69, 1.00), respectively. In the test set, the AUCs of the three trained RF models and PSAD were 0.903 (95% CI: 0.830, 0.975), 0.856 (95% CI: 0.748, 0.964), 0.925 (95% CI:0.838, 1.00), and 0.662 (95% CI: 0.510, 0.813). The AUCs of the three radiomics models were higher than that of PSAD (0.903, 0.856, and 0.925 vs. 0.662, respectively; P = .007, P = .045, and P = .005, respectively).Random forest models developed by 68 Ga-PSMA-11 PET-based radiomics features were proven useful for accurate prediction of invisible intraprostatic lesion on 68 Ga-PSMA-11 PET in patients with primary prostate cancer and showed better diagnostic performance compared with PSAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
赘婿应助尊敬的芷卉采纳,获得10
1秒前
逐梦ing完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
易安发布了新的文献求助10
3秒前
舒适斑马发布了新的文献求助10
4秒前
畅快毒娘发布了新的文献求助30
4秒前
5秒前
Singularity应助薛雨佳采纳,获得10
6秒前
天天快乐应助醒醒采纳,获得10
7秒前
小王发布了新的文献求助10
8秒前
8秒前
9秒前
千寻发布了新的文献求助10
10秒前
10秒前
科研通AI5应助1222采纳,获得20
13秒前
dongguoxia发布了新的文献求助10
14秒前
小菜鸡发布了新的文献求助10
14秒前
眯眯眼的衬衫应助shine0king采纳,获得10
14秒前
香蕉觅云应助nadeem采纳,获得10
16秒前
Hello应助呆头鹅采纳,获得10
16秒前
搜集达人应助江峰采纳,获得10
16秒前
Hello应助nbnbaaa采纳,获得10
16秒前
2311发布了新的文献求助10
16秒前
星辰大海应助不吃西瓜采纳,获得10
16秒前
FashionBoy应助笑面客采纳,获得10
18秒前
Fanny完成签到,获得积分10
19秒前
1222完成签到,获得积分10
19秒前
绝尘发布了新的文献求助20
20秒前
orixero应助千寻采纳,获得10
20秒前
可爱的函函应助勤奋大地采纳,获得10
20秒前
ergatoid完成签到,获得积分10
22秒前
one完成签到,获得积分10
23秒前
24秒前
KingLancet完成签到,获得积分0
24秒前
25秒前
怕黑初曼发布了新的文献求助10
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769687
求助须知:如何正确求助?哪些是违规求助? 3314764
关于积分的说明 10173625
捐赠科研通 3030095
什么是DOI,文献DOI怎么找? 1662612
邀请新用户注册赠送积分活动 795054
科研通“疑难数据库(出版商)”最低求助积分说明 756519