Identification of the apple spoilage causative fungi and prediction of the spoilage degree using electronic nose

扩展青霉 交替链格孢 产黄青霉 食物腐败 青霉属 黑曲霉 曲霉 园艺 食品科学 链格孢 生物 植物 采后 遗传学 细菌
作者
Zhiming Guo,Chuang Guo,Li‐Peng Sun,Min Zuo,Quansheng Chen,Hesham R. El‐Seedi,Xiaobo Zhang
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:44 (10) 被引量:8
标识
DOI:10.1111/jfpe.13816
摘要

Abstract Apple is resistant to storage, but it is susceptible to fungal infection during transportation and storage, resulting in serious losses after harvest. A convenient and nondestructive monitoring method for fungi‐inoculated apples was proposed in this research. Four dominant spoilage fungi, including Aspergillus niger , Penicillium expansum , Penicillium chrysogenum , and Alternaria alternata , were inoculated on apple samples. The volatile information of samples with different degrees of spoilage was obtained by gas sensors. The pattern recognition methods were compared to classify the fungi and degrees of spoilage. Back propagation‐artificial neural networks (BP‐ANN) had the best identification model result with the highest recognition rates of 95.62 and 99.58% for fungi and spoilage degrees, respectively. The variable selection methods were employed, and variables of the gas sensors data for the prediction of apple spoilage area were optimized. The best prediction models of Aspergillus niger , Penicillium expansum , Penicillium chrysogenum , and Alternaria alternata were 0.854, 0.939, 0.909, and 0.918, respectively. The results show that the gas sensors can be used as a nondestructive technique in apple fungi infection evaluation. This proposed fruit spoilage detection technology is expected to provide a reference for the early detection of apple spoilage to promote food quality and safety inspection. Practical Applications This research used gas sensors to identify the four main spoilage fungi of apples and predicted the spoilage degree of apples using established prediction models. The apple spoilage detection method adopted in this research provides a reference for the early detection of fruit spoilage, which is helpful for apple storage and reduces the economic loss caused by corruption. It is an important measure to help ensure the economic benefits of apple and provide consumers with a large number of high‐quality apple products.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zh123完成签到,获得积分10
刚刚
优雅尔芙完成签到 ,获得积分10
1秒前
2秒前
奥美拉唑发布了新的文献求助10
3秒前
板栗发布了新的文献求助20
3秒前
我是老大应助淡淡的航空采纳,获得10
4秒前
4秒前
4秒前
山河统一发布了新的文献求助30
4秒前
5秒前
5秒前
弼马温完成签到 ,获得积分10
5秒前
fcdawn完成签到,获得积分10
5秒前
5秒前
ss发布了新的文献求助30
5秒前
蛙蛙完成签到,获得积分0
6秒前
无可匹敌的饭量完成签到,获得积分10
6秒前
上官若男应助小潘采纳,获得10
6秒前
ding应助hlt采纳,获得10
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
前前前世完成签到,获得积分10
8秒前
9秒前
弼马温关注了科研通微信公众号
9秒前
可爱迪发布了新的文献求助10
9秒前
健壮的化蛹应助顺心的骁采纳,获得10
10秒前
小满发布了新的文献求助10
10秒前
ss完成签到 ,获得积分10
10秒前
tt完成签到,获得积分10
11秒前
11秒前
11秒前
fish1998完成签到,获得积分10
11秒前
顾矜应助优雅尔芙采纳,获得10
11秒前
Mr祥发布了新的文献求助10
12秒前
爬不起来发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776435
求助须知:如何正确求助?哪些是违规求助? 5629479
关于积分的说明 15442901
捐赠科研通 4908608
什么是DOI,文献DOI怎么找? 2641332
邀请新用户注册赠送积分活动 1589287
关于科研通互助平台的介绍 1543910