Identification of the apple spoilage causative fungi and prediction of the spoilage degree using electronic nose

扩展青霉 交替链格孢 产黄青霉 食物腐败 青霉属 黑曲霉 曲霉 园艺 食品科学 链格孢 生物 植物 采后 遗传学 细菌
作者
Zhiming Guo,Chuang Guo,Li‐Peng Sun,Min Zuo,Quansheng Chen,Hesham R. El‐Seedi,Xiaobo Zhang
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:44 (10) 被引量:8
标识
DOI:10.1111/jfpe.13816
摘要

Abstract Apple is resistant to storage, but it is susceptible to fungal infection during transportation and storage, resulting in serious losses after harvest. A convenient and nondestructive monitoring method for fungi‐inoculated apples was proposed in this research. Four dominant spoilage fungi, including Aspergillus niger , Penicillium expansum , Penicillium chrysogenum , and Alternaria alternata , were inoculated on apple samples. The volatile information of samples with different degrees of spoilage was obtained by gas sensors. The pattern recognition methods were compared to classify the fungi and degrees of spoilage. Back propagation‐artificial neural networks (BP‐ANN) had the best identification model result with the highest recognition rates of 95.62 and 99.58% for fungi and spoilage degrees, respectively. The variable selection methods were employed, and variables of the gas sensors data for the prediction of apple spoilage area were optimized. The best prediction models of Aspergillus niger , Penicillium expansum , Penicillium chrysogenum , and Alternaria alternata were 0.854, 0.939, 0.909, and 0.918, respectively. The results show that the gas sensors can be used as a nondestructive technique in apple fungi infection evaluation. This proposed fruit spoilage detection technology is expected to provide a reference for the early detection of apple spoilage to promote food quality and safety inspection. Practical Applications This research used gas sensors to identify the four main spoilage fungi of apples and predicted the spoilage degree of apples using established prediction models. The apple spoilage detection method adopted in this research provides a reference for the early detection of fruit spoilage, which is helpful for apple storage and reduces the economic loss caused by corruption. It is an important measure to help ensure the economic benefits of apple and provide consumers with a large number of high‐quality apple products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助内向沛槐采纳,获得10
刚刚
光亮向雁完成签到 ,获得积分10
刚刚
冰西瓜最棒_完成签到,获得积分10
刚刚
无敌老金刚完成签到,获得积分10
刚刚
Shawn完成签到,获得积分10
1秒前
顾矜应助camellia采纳,获得10
1秒前
宝贝完成签到,获得积分10
1秒前
小马甲应助冰阔落采纳,获得10
1秒前
1秒前
Lucas应助想学采纳,获得10
2秒前
3秒前
感动寒珊发布了新的文献求助10
4秒前
4秒前
胡志飞发布了新的文献求助10
4秒前
6秒前
欣喜尔安发布了新的文献求助30
6秒前
6秒前
大方汉堡完成签到,获得积分10
6秒前
白茶完成签到,获得积分10
6秒前
听风轻语完成签到,获得积分10
6秒前
sunyafei发布了新的文献求助10
8秒前
8秒前
复杂的世德完成签到 ,获得积分10
8秒前
XiaoQi完成签到,获得积分10
8秒前
宇少爱学习哟完成签到,获得积分10
8秒前
明亮巨人完成签到 ,获得积分10
9秒前
老鼠爱吃fish完成签到,获得积分10
9秒前
Y20发布了新的文献求助10
9秒前
科研小民工应助ggg采纳,获得200
10秒前
微风完成签到,获得积分10
10秒前
10秒前
oboo发布了新的文献求助10
10秒前
FashionBoy应助洁净怜寒采纳,获得10
10秒前
运敬完成签到 ,获得积分10
10秒前
cc完成签到,获得积分10
11秒前
细腻的秋天完成签到 ,获得积分10
11秒前
mengliu完成签到,获得积分10
11秒前
江璃发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Clinical Trials: A Methodologic Perspective 200
Essentials of Clinical Research 2nd Edition by Stephen P. Glasser 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3695594
求助须知:如何正确求助?哪些是违规求助? 3247056
关于积分的说明 9853612
捐赠科研通 2958725
什么是DOI,文献DOI怎么找? 1622253
邀请新用户注册赠送积分活动 767867
科研通“疑难数据库(出版商)”最低求助积分说明 741293