Identification of the apple spoilage causative fungi and prediction of the spoilage degree using electronic nose

扩展青霉 交替链格孢 产黄青霉 食物腐败 青霉属 黑曲霉 曲霉 园艺 食品科学 链格孢 生物 植物 采后 遗传学 细菌
作者
Zhiming Guo,Chuang Guo,Li‐Peng Sun,Min Zuo,Quansheng Chen,Hesham R. El‐Seedi,Xiaobo Zhang
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:44 (10) 被引量:8
标识
DOI:10.1111/jfpe.13816
摘要

Abstract Apple is resistant to storage, but it is susceptible to fungal infection during transportation and storage, resulting in serious losses after harvest. A convenient and nondestructive monitoring method for fungi‐inoculated apples was proposed in this research. Four dominant spoilage fungi, including Aspergillus niger , Penicillium expansum , Penicillium chrysogenum , and Alternaria alternata , were inoculated on apple samples. The volatile information of samples with different degrees of spoilage was obtained by gas sensors. The pattern recognition methods were compared to classify the fungi and degrees of spoilage. Back propagation‐artificial neural networks (BP‐ANN) had the best identification model result with the highest recognition rates of 95.62 and 99.58% for fungi and spoilage degrees, respectively. The variable selection methods were employed, and variables of the gas sensors data for the prediction of apple spoilage area were optimized. The best prediction models of Aspergillus niger , Penicillium expansum , Penicillium chrysogenum , and Alternaria alternata were 0.854, 0.939, 0.909, and 0.918, respectively. The results show that the gas sensors can be used as a nondestructive technique in apple fungi infection evaluation. This proposed fruit spoilage detection technology is expected to provide a reference for the early detection of apple spoilage to promote food quality and safety inspection. Practical Applications This research used gas sensors to identify the four main spoilage fungi of apples and predicted the spoilage degree of apples using established prediction models. The apple spoilage detection method adopted in this research provides a reference for the early detection of fruit spoilage, which is helpful for apple storage and reduces the economic loss caused by corruption. It is an important measure to help ensure the economic benefits of apple and provide consumers with a large number of high‐quality apple products.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奥福发布了新的文献求助10
1秒前
1秒前
victor完成签到,获得积分10
4秒前
尘扬发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
迷路雨寒应助111采纳,获得20
5秒前
健壮熊猫发布了新的文献求助10
6秒前
mm发布了新的文献求助10
6秒前
psycho完成签到,获得积分10
6秒前
可爱的函函应助悲伤牛蛙采纳,获得10
6秒前
Orange应助hui采纳,获得10
6秒前
sakiecon完成签到,获得积分10
7秒前
yu风应助科研通管家采纳,获得10
7秒前
xlx应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
xlx应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得30
7秒前
共享精神应助科研通管家采纳,获得30
7秒前
7秒前
xlx应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
xlx应助科研通管家采纳,获得10
7秒前
香蕉诗蕊应助科研通管家采纳,获得10
7秒前
xlx应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
xlx应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
yznfly给123的求助进行了留言
14秒前
shl完成签到,获得积分10
14秒前
14秒前
在水一方应助mm采纳,获得10
15秒前
fly完成签到,获得积分10
16秒前
kxy0311完成签到 ,获得积分10
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604088
求助须知:如何正确求助?哪些是违规求助? 4688919
关于积分的说明 14857074
捐赠科研通 4696569
什么是DOI,文献DOI怎么找? 2541150
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851