Identification of the apple spoilage causative fungi and prediction of the spoilage degree using electronic nose

扩展青霉 交替链格孢 产黄青霉 食物腐败 青霉属 黑曲霉 曲霉 园艺 食品科学 链格孢 生物 植物 采后 遗传学 细菌
作者
Zhiming Guo,Chuang Guo,Li‐Peng Sun,Min Zuo,Quansheng Chen,Hesham R. El‐Seedi,Xiaobo Zhang
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:44 (10) 被引量:8
标识
DOI:10.1111/jfpe.13816
摘要

Abstract Apple is resistant to storage, but it is susceptible to fungal infection during transportation and storage, resulting in serious losses after harvest. A convenient and nondestructive monitoring method for fungi‐inoculated apples was proposed in this research. Four dominant spoilage fungi, including Aspergillus niger , Penicillium expansum , Penicillium chrysogenum , and Alternaria alternata , were inoculated on apple samples. The volatile information of samples with different degrees of spoilage was obtained by gas sensors. The pattern recognition methods were compared to classify the fungi and degrees of spoilage. Back propagation‐artificial neural networks (BP‐ANN) had the best identification model result with the highest recognition rates of 95.62 and 99.58% for fungi and spoilage degrees, respectively. The variable selection methods were employed, and variables of the gas sensors data for the prediction of apple spoilage area were optimized. The best prediction models of Aspergillus niger , Penicillium expansum , Penicillium chrysogenum , and Alternaria alternata were 0.854, 0.939, 0.909, and 0.918, respectively. The results show that the gas sensors can be used as a nondestructive technique in apple fungi infection evaluation. This proposed fruit spoilage detection technology is expected to provide a reference for the early detection of apple spoilage to promote food quality and safety inspection. Practical Applications This research used gas sensors to identify the four main spoilage fungi of apples and predicted the spoilage degree of apples using established prediction models. The apple spoilage detection method adopted in this research provides a reference for the early detection of fruit spoilage, which is helpful for apple storage and reduces the economic loss caused by corruption. It is an important measure to help ensure the economic benefits of apple and provide consumers with a large number of high‐quality apple products.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
alice01987完成签到,获得积分10
3秒前
Jinyang完成签到 ,获得积分10
5秒前
达尔文完成签到 ,获得积分10
8秒前
10秒前
量子星尘发布了新的文献求助10
15秒前
久旱逢甘霖完成签到 ,获得积分10
16秒前
谢陈完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
20秒前
22秒前
NEPUJuly发布了新的文献求助10
25秒前
jun完成签到 ,获得积分10
27秒前
小不完成签到 ,获得积分10
28秒前
oleskarabach发布了新的文献求助10
30秒前
科研通AI6应助科研通管家采纳,获得10
34秒前
充电宝应助科研通管家采纳,获得10
34秒前
脑洞疼应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
科研通AI6应助科研通管家采纳,获得10
34秒前
科研通AI6应助科研通管家采纳,获得10
34秒前
科研通AI6应助科研通管家采纳,获得10
34秒前
spring完成签到 ,获得积分10
34秒前
Owen应助科研通管家采纳,获得10
34秒前
科研通AI6应助科研通管家采纳,获得10
34秒前
量子星尘发布了新的文献求助10
38秒前
39秒前
40秒前
量子星尘发布了新的文献求助10
41秒前
xiuxiu125发布了新的文献求助10
45秒前
Shandongdaxiu完成签到 ,获得积分10
52秒前
勤恳的雪卉完成签到,获得积分0
53秒前
hxpxp完成签到,获得积分10
54秒前
量子星尘发布了新的文献求助10
59秒前
ng完成签到 ,获得积分10
59秒前
可爱可愁完成签到,获得积分10
59秒前
CQ完成签到 ,获得积分10
1分钟前
Fezz完成签到 ,获得积分10
1分钟前
梓树完成签到,获得积分10
1分钟前
cici妈完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671500
求助须知:如何正确求助?哪些是违规求助? 4918822
关于积分的说明 15134852
捐赠科研通 4830227
什么是DOI,文献DOI怎么找? 2586973
邀请新用户注册赠送积分活动 1540582
关于科研通互助平台的介绍 1498856