Identification of the apple spoilage causative fungi and prediction of the spoilage degree using electronic nose

扩展青霉 交替链格孢 产黄青霉 食物腐败 青霉属 黑曲霉 曲霉 园艺 食品科学 链格孢 生物 植物 采后 遗传学 细菌
作者
Zhiming Guo,Chuang Guo,Li‐Peng Sun,Min Zuo,Quansheng Chen,Hesham R. El‐Seedi,Xiaobo Zhang
出处
期刊:Journal of Food Process Engineering [Wiley]
卷期号:44 (10) 被引量:8
标识
DOI:10.1111/jfpe.13816
摘要

Abstract Apple is resistant to storage, but it is susceptible to fungal infection during transportation and storage, resulting in serious losses after harvest. A convenient and nondestructive monitoring method for fungi‐inoculated apples was proposed in this research. Four dominant spoilage fungi, including Aspergillus niger , Penicillium expansum , Penicillium chrysogenum , and Alternaria alternata , were inoculated on apple samples. The volatile information of samples with different degrees of spoilage was obtained by gas sensors. The pattern recognition methods were compared to classify the fungi and degrees of spoilage. Back propagation‐artificial neural networks (BP‐ANN) had the best identification model result with the highest recognition rates of 95.62 and 99.58% for fungi and spoilage degrees, respectively. The variable selection methods were employed, and variables of the gas sensors data for the prediction of apple spoilage area were optimized. The best prediction models of Aspergillus niger , Penicillium expansum , Penicillium chrysogenum , and Alternaria alternata were 0.854, 0.939, 0.909, and 0.918, respectively. The results show that the gas sensors can be used as a nondestructive technique in apple fungi infection evaluation. This proposed fruit spoilage detection technology is expected to provide a reference for the early detection of apple spoilage to promote food quality and safety inspection. Practical Applications This research used gas sensors to identify the four main spoilage fungi of apples and predicted the spoilage degree of apples using established prediction models. The apple spoilage detection method adopted in this research provides a reference for the early detection of fruit spoilage, which is helpful for apple storage and reduces the economic loss caused by corruption. It is an important measure to help ensure the economic benefits of apple and provide consumers with a large number of high‐quality apple products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王昕钥完成签到,获得积分10
1秒前
duo完成签到,获得积分10
1秒前
1111完成签到 ,获得积分10
3秒前
搜集达人应助ycw123采纳,获得10
6秒前
七月流火应助王昕钥采纳,获得100
8秒前
11秒前
可爱的函函应助ZL张莉采纳,获得50
12秒前
luoshikun完成签到,获得积分10
12秒前
123444完成签到,获得积分10
14秒前
14秒前
15秒前
地瓜地瓜完成签到 ,获得积分10
16秒前
ycw123发布了新的文献求助10
18秒前
朴素的啤酒完成签到,获得积分10
18秒前
沧浪江发布了新的文献求助10
19秒前
20秒前
22秒前
凡迪亚比应助此间少年郎采纳,获得10
23秒前
Jasper应助小张采纳,获得10
24秒前
Q W发布了新的文献求助200
25秒前
25秒前
28秒前
科研通AI2S应助灵巧大地采纳,获得10
29秒前
123444发布了新的文献求助10
29秒前
29秒前
阳光总在风雨后完成签到,获得积分10
30秒前
JX完成签到,获得积分10
30秒前
神勇契完成签到,获得积分10
32秒前
喜之郎完成签到,获得积分10
32秒前
柒柒完成签到,获得积分10
32秒前
38秒前
abc完成签到 ,获得积分10
38秒前
沉默安波完成签到,获得积分10
38秒前
哇哈哈哈完成签到,获得积分10
41秒前
Dr大壮发布了新的文献求助10
41秒前
沉默安波发布了新的文献求助10
43秒前
东方欲晓完成签到 ,获得积分0
43秒前
Bonnie完成签到,获得积分10
43秒前
BCKT完成签到,获得积分10
44秒前
一杯奶茶完成签到,获得积分10
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511680
关于积分的说明 11159133
捐赠科研通 3246277
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874347
科研通“疑难数据库(出版商)”最低求助积分说明 804343